terclim by ICS banner
IVES 9 IVES Conference Series 9 Development and application of CRISPR/Cas in grapevine

Development and application of CRISPR/Cas in grapevine

Abstract

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years.  Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine. Optimization of CRISPR/Cas9 system, as well as the other CRISPR/Cas systems including CRISPR/LbCas12a and base editor in grapevine genome editing, is also discussed. In addition, we discuss the challenges and future perspectives for precision genome editing in grapevine, expecting to present a roadmap for the future applications of CRISPR technology in this species.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zhenchang Liang1,2,3*, Chong Ren1,2,3

1 State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
2 Beijing Key Laboratory of Grape Sciences and Enology, Beijing 100093, PR China
3 China National Botanical Garden, Beijing 100093, PR China

Contact the author*

Keywords

grapevine, genome editing, CRISPR/Cas, challenges, future perspectives

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Review of the delimited zone of the AOC Saint-Joseph

L’appellation d’origine contrôlée repose sur une définition précise de l’aire de production du raisin. Cette délimitation définie par l’Institut National des Appellations d’Origine est proposée par des experts choisis pour leurs compétences dans le domaine de la connaissance de la relation terroir – vins, après avis du syndicat de défense de chaque AOC.