terclim by ICS banner
IVES 9 IVES Conference Series 9 Development and application of CRISPR/Cas in grapevine

Development and application of CRISPR/Cas in grapevine

Abstract

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years.  Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine. Optimization of CRISPR/Cas9 system, as well as the other CRISPR/Cas systems including CRISPR/LbCas12a and base editor in grapevine genome editing, is also discussed. In addition, we discuss the challenges and future perspectives for precision genome editing in grapevine, expecting to present a roadmap for the future applications of CRISPR technology in this species.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zhenchang Liang1,2,3*, Chong Ren1,2,3

1 State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
2 Beijing Key Laboratory of Grape Sciences and Enology, Beijing 100093, PR China
3 China National Botanical Garden, Beijing 100093, PR China

Contact the author*

Keywords

grapevine, genome editing, CRISPR/Cas, challenges, future perspectives

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The vine and the hazelnut as elements of characterization of a terroir

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy).

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.