terclim by ICS banner
IVES 9 IVES Conference Series 9 From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

Abstract

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays. The “gene-centered” approach entails using one or more DNA sequences as bait to explore the TFs that bind to these specific DNA elements. Methods belonging to this approach encompass yeast one-hybrid (Y1H), PICh, and Reverse ChIP. Both methodologies offer distinct advantages and face limitations, largely stemming from challenges related to complexity, efficiency, and specificity. With the emergence of next-generation sequencing (NGS) protocols and the CRISPR/Cas system, new avenues for investigating trans-cis interactions in organisms have opened. In our research focusing on grapevines, we discuss advancements in both protein- and gene-centered approaches. Firstly, we present the implementation of a DNA Affinity Purification (DAP-seq) protocol in grapevines to explore the cistrome associated with various TFs from the WRKY and MYB families. Secondly, we address the challenge of developing an innovative gene-centered approach utilizing a CRISPR/Cas system for in-situ purification of regulatory elements. This approach aims not only to identify proteins associated with specific genomic regions but also to elucidate long-range DNA interactions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Aurélien Devillars1, Gabriele Magon1, Silvia Farinati1, Valerio Licursi2, Gabriele Magris3, Sara Zenoni3, Bhanu Prakash Potlapalli4, Andreas Houben4, Alessandro Vannozzi1*

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Institute of Molecular Biology and Pathology, CNR c/o Department of Biology and Biotechnologies, Sapienza University of Rome, Via degli Apuli, 4 – 00185 Rome
3 University of Udine, via Delle Scienze 206
4 Department of Biotechnologies, University of Verona, Strada le Grazie 1, Verona (VR), Italy
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

DAP-seq, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.