terclim by ICS banner
IVES 9 IVES Conference Series 9 From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

Abstract

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays. The “gene-centered” approach entails using one or more DNA sequences as bait to explore the TFs that bind to these specific DNA elements. Methods belonging to this approach encompass yeast one-hybrid (Y1H), PICh, and Reverse ChIP. Both methodologies offer distinct advantages and face limitations, largely stemming from challenges related to complexity, efficiency, and specificity. With the emergence of next-generation sequencing (NGS) protocols and the CRISPR/Cas system, new avenues for investigating trans-cis interactions in organisms have opened. In our research focusing on grapevines, we discuss advancements in both protein- and gene-centered approaches. Firstly, we present the implementation of a DNA Affinity Purification (DAP-seq) protocol in grapevines to explore the cistrome associated with various TFs from the WRKY and MYB families. Secondly, we address the challenge of developing an innovative gene-centered approach utilizing a CRISPR/Cas system for in-situ purification of regulatory elements. This approach aims not only to identify proteins associated with specific genomic regions but also to elucidate long-range DNA interactions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Aurélien Devillars1, Gabriele Magon1, Silvia Farinati1, Valerio Licursi2, Gabriele Magris3, Sara Zenoni3, Bhanu Prakash Potlapalli4, Andreas Houben4, Alessandro Vannozzi1*

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Institute of Molecular Biology and Pathology, CNR c/o Department of Biology and Biotechnologies, Sapienza University of Rome, Via degli Apuli, 4 – 00185 Rome
3 University of Udine, via Delle Scienze 206
4 Department of Biotechnologies, University of Verona, Strada le Grazie 1, Verona (VR), Italy
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

DAP-seq, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Preliminary studies of zoning applications in Goriška Brda (Collio) winegrowing region, Slovenia

Goriška Brda est la région viticole située le plus à l’ouest de la Slovénie, attenante au Collio d’Italie. Goriška Brda (2020 ha de vignobles) a une longue tradition d’élevage viticole. La proximité de la mer Adriatique (Golfe de Trieste) au sud-ouest et des Alpes Juliennes au nord contribue à un climat caractéristique et unique qui influe sur la croissance et la fertilité de la vigne. La constitution des sols, un climat typique et un relief mouvementé provoquent des différences dans la production du raisin, sa quantité et sa qualité. L’utilisation du zonage ou du microzonage permettraient d’atténuer les influences des facteurs climatiques et du sol sur la production de la vigne ou d’en profiter. Pour évaluer la signification des différents facteurs, nous avons résumé et réuni les modèles de différents auteurs.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.