terclim by ICS banner
IVES 9 IVES Conference Series 9 From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

Abstract

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays. The “gene-centered” approach entails using one or more DNA sequences as bait to explore the TFs that bind to these specific DNA elements. Methods belonging to this approach encompass yeast one-hybrid (Y1H), PICh, and Reverse ChIP. Both methodologies offer distinct advantages and face limitations, largely stemming from challenges related to complexity, efficiency, and specificity. With the emergence of next-generation sequencing (NGS) protocols and the CRISPR/Cas system, new avenues for investigating trans-cis interactions in organisms have opened. In our research focusing on grapevines, we discuss advancements in both protein- and gene-centered approaches. Firstly, we present the implementation of a DNA Affinity Purification (DAP-seq) protocol in grapevines to explore the cistrome associated with various TFs from the WRKY and MYB families. Secondly, we address the challenge of developing an innovative gene-centered approach utilizing a CRISPR/Cas system for in-situ purification of regulatory elements. This approach aims not only to identify proteins associated with specific genomic regions but also to elucidate long-range DNA interactions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Aurélien Devillars1, Gabriele Magon1, Silvia Farinati1, Valerio Licursi2, Gabriele Magris3, Sara Zenoni3, Bhanu Prakash Potlapalli4, Andreas Houben4, Alessandro Vannozzi1*

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Institute of Molecular Biology and Pathology, CNR c/o Department of Biology and Biotechnologies, Sapienza University of Rome, Via degli Apuli, 4 – 00185 Rome
3 University of Udine, via Delle Scienze 206
4 Department of Biotechnologies, University of Verona, Strada le Grazie 1, Verona (VR), Italy
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

DAP-seq, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.