Terroir 2016 banner
IVES 9 IVES Conference Series 9 A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

Abstract

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources. The system has been designed to validate, refine, and improve the Automatic Landform Inference Mapping (ALIM) soil modeling/ sampling method, and to define the key components for perennial crop production, in general, and wine grapes in particular.

The feasibility of this novel technology has been validated through analysis of data collected to date through sensor deployment in West Coast vineyards and the development of highly resolved 4D soil maps that can visualize vine water availability. A comparison of predicted map-based water flow at several depths and locations vs. in-field sensor sampled values was conducted.

The accuracy of predicted soil characteristics across vineyard blocks at several locations has been validated based on physical and chemical analyses and statistical comparisons. The first completed real-time spatial soil functional maps have been used to design visual analytics to create an effective decision-making environment applicable in commercial vineyards.

Working directly with vineyard managers and winemakers, this integrated research and extension project has collaboratively developed an interactive, user-driven decision making environment that harnesses visual analytics to organize all the inputs from deployed soil sensors, high-resolution spatial soil function and water dynamic responses, while integrating all available historic and current data flows. VINES is designed to integrate future soil, plant, viticulture, and enological models into its decision support system to help respond to changing climatic and especially to drought conditions, and to improve general vineyard management, harvest scheduling, and long-term sustainability and life-cycle decisions.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David S. EBERT (1), Phillip R. OWENS (1), Trester J. GOETTING (2), Julie A. JOHNSON (3), Christian E. BUTZKE (1)

(1) Purdue University, West Lafayette, IN 47907, USA
(2) Robert Biale Vineyards, Napa, CA, USA
(3) Tres Sabores Winery, Rutherford, CA, USA

Contact the author

Keywords

soil mapping, terroir, wine quality, plant water availability, visualization, decision-support

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.