Terroir 2016 banner
IVES 9 IVES Conference Series 9 A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

Abstract

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources. The system has been designed to validate, refine, and improve the Automatic Landform Inference Mapping (ALIM) soil modeling/ sampling method, and to define the key components for perennial crop production, in general, and wine grapes in particular.

The feasibility of this novel technology has been validated through analysis of data collected to date through sensor deployment in West Coast vineyards and the development of highly resolved 4D soil maps that can visualize vine water availability. A comparison of predicted map-based water flow at several depths and locations vs. in-field sensor sampled values was conducted.

The accuracy of predicted soil characteristics across vineyard blocks at several locations has been validated based on physical and chemical analyses and statistical comparisons. The first completed real-time spatial soil functional maps have been used to design visual analytics to create an effective decision-making environment applicable in commercial vineyards.

Working directly with vineyard managers and winemakers, this integrated research and extension project has collaboratively developed an interactive, user-driven decision making environment that harnesses visual analytics to organize all the inputs from deployed soil sensors, high-resolution spatial soil function and water dynamic responses, while integrating all available historic and current data flows. VINES is designed to integrate future soil, plant, viticulture, and enological models into its decision support system to help respond to changing climatic and especially to drought conditions, and to improve general vineyard management, harvest scheduling, and long-term sustainability and life-cycle decisions.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David S. EBERT (1), Phillip R. OWENS (1), Trester J. GOETTING (2), Julie A. JOHNSON (3), Christian E. BUTZKE (1)

(1) Purdue University, West Lafayette, IN 47907, USA
(2) Robert Biale Vineyards, Napa, CA, USA
(3) Tres Sabores Winery, Rutherford, CA, USA

Contact the author

Keywords

soil mapping, terroir, wine quality, plant water availability, visualization, decision-support

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Seasonal variations and climate interactions with phenolic extractability of Pinot noir across the whole winemaking process

Context and Purpose of the Study. A deeper understanding of the relationship between weather conditions and wine quality is essential for assessing the impact of climate change and developing effective adaptation strategies.

The role of mechanization in zone/terroir expression

Vineyard mechanization will be addressed in this review paper primarily as related to pruning and harvesting since these operations typically require a great deal of the total yearly labour demand (Intrieri and Poni, 1998). However, to be able to define how mechanization interacts with “terroir”, a rigorous definition of the latter term is needed.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Estudio de la adaptación y del comportamiento productivo y enológico de variedades blancas foráneas en la zona vitícola del Penedés

Estudio comparativo del comportamiento de ocho variedades de viníferas blancas en el Penedés, injertadas sobre los portainjertos 41-B y 110-R.
Se describen los comportamientos

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.