Terroir 2016 banner
IVES 9 IVES Conference Series 9 A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

Abstract

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources. The system has been designed to validate, refine, and improve the Automatic Landform Inference Mapping (ALIM) soil modeling/ sampling method, and to define the key components for perennial crop production, in general, and wine grapes in particular.

The feasibility of this novel technology has been validated through analysis of data collected to date through sensor deployment in West Coast vineyards and the development of highly resolved 4D soil maps that can visualize vine water availability. A comparison of predicted map-based water flow at several depths and locations vs. in-field sensor sampled values was conducted.

The accuracy of predicted soil characteristics across vineyard blocks at several locations has been validated based on physical and chemical analyses and statistical comparisons. The first completed real-time spatial soil functional maps have been used to design visual analytics to create an effective decision-making environment applicable in commercial vineyards.

Working directly with vineyard managers and winemakers, this integrated research and extension project has collaboratively developed an interactive, user-driven decision making environment that harnesses visual analytics to organize all the inputs from deployed soil sensors, high-resolution spatial soil function and water dynamic responses, while integrating all available historic and current data flows. VINES is designed to integrate future soil, plant, viticulture, and enological models into its decision support system to help respond to changing climatic and especially to drought conditions, and to improve general vineyard management, harvest scheduling, and long-term sustainability and life-cycle decisions.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David S. EBERT (1), Phillip R. OWENS (1), Trester J. GOETTING (2), Julie A. JOHNSON (3), Christian E. BUTZKE (1)

(1) Purdue University, West Lafayette, IN 47907, USA
(2) Robert Biale Vineyards, Napa, CA, USA
(3) Tres Sabores Winery, Rutherford, CA, USA

Contact the author

Keywords

soil mapping, terroir, wine quality, plant water availability, visualization, decision-support

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Winegrape cultivars are particularly sensitive to temperature and recent changes in climate have advanced the onset of berry ripening, resulting in unbalanced fruit composition at harvest.

Nivel de infección y saneamiento del virus del entrenudo corto (GFLV) en el cv. de vid Pedro Ximenez en la denominación de origen Montilla-Moriles (DOMM)

Mediante análisis por test ELISA de hojas de vides (Vitis vinifera L.) del cv. Pedro Ximénez, procedentes de 28 parcelas experimentales distribuidas por la DOMM

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.