Terroir 2016 banner
IVES 9 IVES Conference Series 9 A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

Abstract

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources. The system has been designed to validate, refine, and improve the Automatic Landform Inference Mapping (ALIM) soil modeling/ sampling method, and to define the key components for perennial crop production, in general, and wine grapes in particular.

The feasibility of this novel technology has been validated through analysis of data collected to date through sensor deployment in West Coast vineyards and the development of highly resolved 4D soil maps that can visualize vine water availability. A comparison of predicted map-based water flow at several depths and locations vs. in-field sensor sampled values was conducted.

The accuracy of predicted soil characteristics across vineyard blocks at several locations has been validated based on physical and chemical analyses and statistical comparisons. The first completed real-time spatial soil functional maps have been used to design visual analytics to create an effective decision-making environment applicable in commercial vineyards.

Working directly with vineyard managers and winemakers, this integrated research and extension project has collaboratively developed an interactive, user-driven decision making environment that harnesses visual analytics to organize all the inputs from deployed soil sensors, high-resolution spatial soil function and water dynamic responses, while integrating all available historic and current data flows. VINES is designed to integrate future soil, plant, viticulture, and enological models into its decision support system to help respond to changing climatic and especially to drought conditions, and to improve general vineyard management, harvest scheduling, and long-term sustainability and life-cycle decisions.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David S. EBERT (1), Phillip R. OWENS (1), Trester J. GOETTING (2), Julie A. JOHNSON (3), Christian E. BUTZKE (1)

(1) Purdue University, West Lafayette, IN 47907, USA
(2) Robert Biale Vineyards, Napa, CA, USA
(3) Tres Sabores Winery, Rutherford, CA, USA

Contact the author

Keywords

soil mapping, terroir, wine quality, plant water availability, visualization, decision-support

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.

Il paesaggio delle alberate aversane ed il vino Asprinio

Nel corso del 2009, in alcuni vigneti allevati ad alberata in provincia di Caserta (Italia), è stata avviata una ricerca per valutare la variabilità genetica della popolazione del vitigno ‘Asprinio’, la condizione sanitaria delle piante e le caratteristiche del vino sia rispetto alla forma di allevamento (alberata tradizionale e controspalliera) che all’altezza della fascia produttiva.