Terroir 2014 banner
IVES 9 IVES Conference Series 9 Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Abstract

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides. Among possible solutions the use of elicitors that could be included in integrated pest management or biocontrol strategies might be very promising. These bioactive compounds are able to trigger plant defences, leading to induced resistance (IR) against pathogens. Despite IR can be elicited very successfully in controlled environments; it is in most cases not effective enough in practically controlling disease in the vineyard.

To obtain a comprehensive understanding of IR and to identify molecular markers enabling the identification of factors (physiological, environmental…) that can impact IR efficacy in the vineyard we performed a transcriptomic analysis under controlled conditions. The results indicated that among highly up-regulated genes associated to IR, one was annotated as terpene synthase, suggesting that terpenes could be emitted following elicitor treatment. This prompted us to investigate whether IR elicitors actually induce the production of volatile organic compounds (VOCs). Applying online analysis (PTR-QMS) of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME / GC-MS), we followed the emission of VOCs of vines in response to elicitor-IR against downy mildew under controlled greenhouse conditions.

The results obtained point out some of them as potential markers of elicitor-IR (as trans a-farnesene) whereas MeSA is rather a marker of downy mildew infection.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Marielle Adrian (1), Malik Chalal (1), Barbro Winkler (2), Karine Gourrat (3), Jörg Schnitzler (2), Xavier Daire (4)

(1) Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 
(2) Research Unit EUS, Helmholtz Zentrum München, Germany 
(3) ChemoSens, INRA Dijon, France 
(4) Inra, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 

Contact the author

Keywords

grapevine, elicitor, induced resistance, downy mildew, VOCs

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.