terclim by ICS banner
IVES 9 IVES Conference Series 9 Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Abstract

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them. After conducting preliminary assays on protoplast system, we got introduced to the CRISPR-FISH technique, that uses dCas9 and a fluorescent guide to label telomeres on nuclei directly isolated from a small quantity of fixed leaves with a very simple procedure. We used part of such technique to easily obtain the chromatin that was needed for our trials and eventually performed the pull-down of the targeted DNA sequences directly on these nuclei after transforming them with the dCas9 complex. Sequencing the obtained fragments allows to verify the specificity of the tool. Far from having eliminated the idea of using protoplasts as model system, we proceed developing both approaches in parallel.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Aurélien Devillars1*, Silvia Farinati1, Edoardo Bertini2, Chiara Fattorini2, Sara Lissandrini2, Adriana Fernanda Soria Garcia1, Bhanu Prakash Potlapalli3, Andreas Houben3, Sara Zenoni2 and Alessandro Vannozzi1

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Department of Biotechnology, University of Verona, Verona, Italy
3 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

Molecular Biology, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP)

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.