terclim by ICS banner
IVES 9 IVES Conference Series 9 Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Abstract

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them. After conducting preliminary assays on protoplast system, we got introduced to the CRISPR-FISH technique, that uses dCas9 and a fluorescent guide to label telomeres on nuclei directly isolated from a small quantity of fixed leaves with a very simple procedure. We used part of such technique to easily obtain the chromatin that was needed for our trials and eventually performed the pull-down of the targeted DNA sequences directly on these nuclei after transforming them with the dCas9 complex. Sequencing the obtained fragments allows to verify the specificity of the tool. Far from having eliminated the idea of using protoplasts as model system, we proceed developing both approaches in parallel.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Aurélien Devillars1*, Silvia Farinati1, Edoardo Bertini2, Chiara Fattorini2, Sara Lissandrini2, Adriana Fernanda Soria Garcia1, Bhanu Prakash Potlapalli3, Andreas Houben3, Sara Zenoni2 and Alessandro Vannozzi1

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Department of Biotechnology, University of Verona, Verona, Italy
3 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

Molecular Biology, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys