Terroir 2010 banner
IVES 9 IVES Conference Series 9 Texas terroir: gis characterization of the texas high plains ava

Texas terroir: gis characterization of the texas high plains ava

Abstract

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region. The distinctive characteristics of the Texas High Plains AVA have contributed to the region’s reputation for producing medal-winning red wines with excellent color and good tannins, primarily from Cabernet Sauvignon and Merlot. The large region (3.6 million ha) is known for its semi-arid climate with hot summers and mild winters, and very deep, well-drained soils. However, little detailed information is available on the spatial variability of growing conditions within the region. The Texas AVA GIS was constructed with datasets describing soils, elevation, topography, and climatic variables of significance to grape production for all 8 winegrowing regions in the state. Growing degree-days (GDD) and ripening period mean temperature (RPMT) in the Texas High Plains AVA decrease from southeast to northwest as elevation increases. The range of GDD is 2028 to 2653. RPMT ranges from 23.8-26.7oC in August and 19.9-22.6oC in September. Precipitation ranges from 41.4-63.7 cm, increasing from west to east. High solar radiation contributes to vine fruitfulness and color development in red wine grapes. Vineyards are predominantly planted on the reddish-brown, deep fine sandy loam and sandy clay loam soils (Amarillo, Patricia, and the related Brownfield series). Patricia soils predominate in the southern portion of the AVA; Amarillo is overall more common and found primarily in central areas of the region. An interactive website was created for public access to the GIS – the Winegrowing Regions of Texas [txwineregions.tamu.edu]. Such data will be critical for vineyard site selection and matching grape cultivars to site as the region’s wine industry continues to expand and experiment with warm-climate cultivars.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

E.W. Hellman (1,2), E.A. Takow (3), M.D. Tchakerian (3), and R.N. Coulson (3)

(1) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA
(2) Department of Plant and Soil Science, Texas Tech University
(3) Knowledge Engineering Laboratory, Texas A&M University, College Station, TX 77843 USA

Contact the author

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors

Spectral features of vine leaves are influenced by their mineral content

The reflectance spectra of vegetation carry potentially useful information that can be used to determine chemical composition and discriminate between vegetation classes. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data.