terclim by ICS banner
IVES 9 IVES Conference Series 9 In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Abstract

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges. New plant breeding technologies (NpBT) can be employed in grapevine cultivation and, in particular, genome editing through CRISPR/Cas9 system has been shown to be a valid application for targeted mutagenesis, by until now its application is restricted on a few cultivars. Genetic improvement via in vitro delivery of desired constructs requires the regeneration of genome-edited plants. In vitro plant regeneration, a pivotal process in genetic engineering, encounters obstacles, particularly in grapevines, due to factors like genotype and explant-dependent responses. Therefore, reliable in vitro regeneration and propagation systems are imperative. Understanding and enhancing regeneration across different genotypes are critical steps in advancing genetic improvements and gene functional studies in grapevines. The study focuses on developing an efficient in vitro plant regeneration protocol by somatic embryogenesis (SE) of the grapevine cv. Aglianico, the most important grapevine variety of southern Italy regions. The embryogenic materials obtained will be used for future functional studies through genome editing approaches.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carmine Carratore1*, Edoardo Bertini2, Luca Cattaneo1, Clizia Villano3, Riccardo Aversano3, Mario Pezzotti1, Sara Zenoni1,2

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 Edivite s.r.l, San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova, Italy
3 Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici, Italy

Contact the author*

Keywords

Vitis vinifera, Biodiversity, Genome Editing, Somatic Embryogenesis, Aglianico

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.