terclim by ICS banner
IVES 9 IVES Conference Series 9 Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Abstract

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement. We developed a cost-effective microwave-assisted protocol for the synthesis of 10 nm monodispersed bPEI-CDs. These molecules showed over 50% dsRNA protection against RNase III degradation at a 200:1 (w/w) ratio. We further demonstrated their capability to enhance cellular uptake by successfully delivering fluorolabeled-dsRNAs (Cy3-RNA) complexed with CDs into intact plant tissue-cultured cells. Notably, Cy3-RNA sprayed with CD on the surface of greenhouse grapevine leaves through a low-pressure spray application penetrated stomata cells and neighboring cells. Ultimately, the ability of dsRNA complexed with CD to trigger RNA interference was confirmed using a 21 nucleotide-dsRNA targeting eGFP . Ongoing work quantitatively compares, through qPCR, the reduced expression of GFP on eGFP-expressing transgenic microvine leaves sprayed with CD-complexed and naked siRNA. This innovative approach, leveraging CDs, aims to tackle critical barriers in dsRNA delivery, particularly by addressing cell wall-related limitations in plant. This research marks a pivotal step in optimizing RNA-based grapevine defense strategies, and propelling sustainable viticulture practices forward.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

RNA interference, Spray-Induced Gene Silencing (SIGS), Carbon dots, dsRNA delivery, Sustainable agriculture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature