Terroir 2010 banner
IVES 9 IVES Conference Series 9 Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Abstract

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore, water stress is a limiting factor for a wide range of plant physiological processes and can have a profound effect on plant metabolism and development. Drought stress can decrease the sensitivity of photosynthesis to subsequent water deficits and similarly reduce the sensitivity of stomata to low atmospheric vapor pressure deficit during the dry season. Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how many of them behave during a drought event and after recovering. The aim of this study is to analyze how stomatal conductance is regulated under water stress and recovery, as well as how water stress affects adjustments of water use efficiency in cultivar Corvina, Corvinone and Rondinella grafted on Kober 5BB and 140 Ruggeri rootstocks. The experiment was conducted on 4-year old vines, grown in an experimental field of Valpolicella in Verona province. The effects of water deficit and recovery after rewatering were evaluated by using thermal imaging, a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. The thermal indices were compared with measured stomatal conductance. Results of mid-morning and at noon measurements showed significant difference between cultivars for both stomatal conductance and canopy water stress index. An apparent difference between the cultivars was the highest speed of the recovery noted for Corvinone compared to Corvina and Rondinella.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.A. Bahouaoui (1), E. Sartor (1), E. Rovetta (1), G.B. Tornielli (1), M. Boselli (1), G. Ferrara (2)

(1) Department of Science and Technology of the Vine and Wine of University of Verona, Via della Pieve 70, 37129 San Floriano (VR) – Italy
(2) Department of science of Plant Production of the University of Bari, Via Amendola, 165/a – 70126 Bari – Italy

Contact the author

Keywords

Stomatal conductance, photosynthesis, water stress, recovery, grapevines

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.