terclim by ICS banner
IVES 9 IVES Conference Series 9 Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Abstract

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods. A strategy based on the Bean yellow dwarf virus (BeYDV) allows for the temporary expression of regulators while minimizing the risk of obtaining transgenic plants. Additionally, the high copy number replication of BeYDV allows for high CRISPR/CAS levels, thereby improving editing. The goal of this study is to evaluate the effects of individual or combined developmental regulators’ expression on grapevine embryogenic tissues. We conducted preliminary assays using BeYDV-derived vectors for luciferase reporter gene expression to optimize delivery efficiencies. Assays were performed on ‘Chardonnay’ calli and protoplasts using both agrobacterium-mediated transformation and protoplast transfection approaches. The present study seeks to enhance the transformation protocols and regeneration processes, with the ultimate aim of realizing the full potential of editing technologies in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Flavia Angela Maria Maggiolini1*, Margherita D’Amico1, Lucia Rosaria Forleo1, Annalisa Prencipe2, Bruna Suriano1, Mario Ventura2, Maria Francesca Cardone1, Riccardo Velasco1, Carlo Bergamini1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy.

Contact the author*

Keywords

Vitis vinifera, genome editing, protoplasts, developmental regulators, BeYDV

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.