terclim by ICS banner
IVES 9 IVES Conference Series 9 Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Abstract

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods. A strategy based on the Bean yellow dwarf virus (BeYDV) allows for the temporary expression of regulators while minimizing the risk of obtaining transgenic plants. Additionally, the high copy number replication of BeYDV allows for high CRISPR/CAS levels, thereby improving editing. The goal of this study is to evaluate the effects of individual or combined developmental regulators’ expression on grapevine embryogenic tissues. We conducted preliminary assays using BeYDV-derived vectors for luciferase reporter gene expression to optimize delivery efficiencies. Assays were performed on ‘Chardonnay’ calli and protoplasts using both agrobacterium-mediated transformation and protoplast transfection approaches. The present study seeks to enhance the transformation protocols and regeneration processes, with the ultimate aim of realizing the full potential of editing technologies in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Flavia Angela Maria Maggiolini1*, Margherita D’Amico1, Lucia Rosaria Forleo1, Annalisa Prencipe2, Bruna Suriano1, Mario Ventura2, Maria Francesca Cardone1, Riccardo Velasco1, Carlo Bergamini1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy.

Contact the author*

Keywords

Vitis vinifera, genome editing, protoplasts, developmental regulators, BeYDV

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses.

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].