terclim by ICS banner
IVES 9 IVES Conference Series 9 Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Abstract

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods. A strategy based on the Bean yellow dwarf virus (BeYDV) allows for the temporary expression of regulators while minimizing the risk of obtaining transgenic plants. Additionally, the high copy number replication of BeYDV allows for high CRISPR/CAS levels, thereby improving editing. The goal of this study is to evaluate the effects of individual or combined developmental regulators’ expression on grapevine embryogenic tissues. We conducted preliminary assays using BeYDV-derived vectors for luciferase reporter gene expression to optimize delivery efficiencies. Assays were performed on ‘Chardonnay’ calli and protoplasts using both agrobacterium-mediated transformation and protoplast transfection approaches. The present study seeks to enhance the transformation protocols and regeneration processes, with the ultimate aim of realizing the full potential of editing technologies in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Flavia Angela Maria Maggiolini1*, Margherita D’Amico1, Lucia Rosaria Forleo1, Annalisa Prencipe2, Bruna Suriano1, Mario Ventura2, Maria Francesca Cardone1, Riccardo Velasco1, Carlo Bergamini1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy.

Contact the author*

Keywords

Vitis vinifera, genome editing, protoplasts, developmental regulators, BeYDV

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

VineAI: artificial intelligence for fungal disease

Early and accurate grapevine disease detection and surveillance are crucial for optimizing vineyard management practices.

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The aroma diversity of italian white wines

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference.