terclim by ICS banner
IVES 9 IVES Conference Series 9 Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Abstract

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods. A strategy based on the Bean yellow dwarf virus (BeYDV) allows for the temporary expression of regulators while minimizing the risk of obtaining transgenic plants. Additionally, the high copy number replication of BeYDV allows for high CRISPR/CAS levels, thereby improving editing. The goal of this study is to evaluate the effects of individual or combined developmental regulators’ expression on grapevine embryogenic tissues. We conducted preliminary assays using BeYDV-derived vectors for luciferase reporter gene expression to optimize delivery efficiencies. Assays were performed on ‘Chardonnay’ calli and protoplasts using both agrobacterium-mediated transformation and protoplast transfection approaches. The present study seeks to enhance the transformation protocols and regeneration processes, with the ultimate aim of realizing the full potential of editing technologies in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Flavia Angela Maria Maggiolini1*, Margherita D’Amico1, Lucia Rosaria Forleo1, Annalisa Prencipe2, Bruna Suriano1, Mario Ventura2, Maria Francesca Cardone1, Riccardo Velasco1, Carlo Bergamini1

1 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy.

Contact the author*

Keywords

Vitis vinifera, genome editing, protoplasts, developmental regulators, BeYDV

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.