OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity


Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized. 

However, haze formation is not only a question of protein composition and concentration. It depends on many other factors, such as pH, wine composition (polyphenols, polysaccharides,…). Heat or chemical tests used to adjust the bentonite dose often leads to an overestimation, because they aim at removing all the proteins, even the ones that are stable in the range 60-80 °C and are not involved in spontaneous haze. 

In this study, we analyzed and quantified the proteins in 7 white wines (3 varieties, 4 areas), treated with four bentonite doses ranging from 5 to 80 g/hL. In parallel, samples of wines were heated during 30 minutes at 40, 60 and 80 °C and the residual proteins analyzed. 

The wines differed in their protein composition. In each wine, when they were present, the proteins were adsorbed on bentonite in this order: chitinase and β-glucanase, Lipid Transfer Protein (LTP), Thaumatin Like (TL) 22 kDa, TL 19 kDa and Invertase. 

The adsorption of a given protein was wine dependent. This could be due to wine pH and ionic strength (different in the studied wines), which changes electrostatic interactions that drive the protein adsorption onto bentonite, but also to other differences in composition (ethanol, polysaccharides, polyphenols, metals…). Experiments performed at pH 2.5 indicated that pH is not the only cause of such different adsorption behaviours: indeed adsorption isotherms were different. 

Protein adsorption on bentonite was compared to their thermal sensitivity. It was ranked as previously: β-glucanase ~ Chitinase > TL22 > TL19 ~ Invertase > LTP. It is worth noting that the most thermostable proteins are the ones which need the highest doses of bentonite on a wide panel of wines. These stable proteins do not need to be removed and thus bentonite doses could be reduced. More specific tests, which would take into account only the most sensitive proteins need to be developed.


Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article


Céline Poncet-Legrand (1), Eric Meistermann (2), Frédéric Charrier (3), Philippe Cottereau (4), Patrick Chemardin (1), Aude Vernhet (1)

1 UMR SPO- Univ Montpellier – INRA- Montpellier SupAgro – 2, place Pierre Viala, 34060 Montpellier cedex FRANCE 
2 Institut Français de la Vigne et du Vin, F-68000 Colmar 
3 Institut Français de la Vigne et du Vin, F-44120 Vertou 
4 Institut Français de la Vigne et du Vin, F-30230 Rodilhan 

Contact the author


haze formation, fining, protein adsorption, wine matrix


IVES Conference Series | OENO IVAS 2019


Related articles…

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Relations entre critères sensoriels et analytiques des vins et des vendanges de Cabernet franc issus de terroirs et de millésimes différents en Val de Loire. Essai de caractérisation de la typicité

En France, la notion de Terroir a largement contribué à la réputation de nombreux vignobles. Elle a permis aussi d’accentuer la sensibilité des consommateurs, à la notion d’origine d’un produit. L’avenir de nombreux vignobles français semble lié à la capacité à innover en produisant des vins de qualité possédant en plus une typicité, aspect sensoriel susceptible de s’affirmer comme un facteur de vente auprès des futurs clients éduqués sur le plan du goût.