terclim by ICS banner
IVES 9 IVES Conference Series 9 A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

Abstract

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes. In parallel, we were able to assess the efficiencies of several guide RNAs (gRNAs) targeting genes with fall-out on drought stress and pathogen resilience. To the first aim, a gene belonging to glutathione S-transferase (VvGST40) and two gene belonging to pectin-methyl esterase (VvPME1 and VvPME3) have been targeted. Several edited lines were acclimatized and are currently under evaluation. In parallel, two genes belonging to the Mildew Locus-O (VvMLO6 and VvMLO7) and a non-expressor pathogenesis related gene (VvNPR3) were targeted to improve pathogen resilience. Acclimatized plants edited for MLO genes resulted almost resistant to Erysiphe necator (disease incidence reduction up to 80%), whereas NPR3-edited vines showed a significant reduction in disease severity (up to 70%). In conclusion, our approaches allowed to improve stress resilience of several economically-important genotypes such as Pinot noir, Chardonnay, Sangiovese and Glera but also widely used rootstocks (e.g., 110R and K5BB).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1*, Loredana Moffa1, Anna Narduzzo1, Ivan Bevilacqua1, Irene Perrone2, Chiara Pagliarani2, Giorgio Gambino2, Claudio Lovisolo3, Riccardo Velasco1, Walter Chitarra1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)
2 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

powdery mildew, climate change, recalcitrance, cisgenic-like approach, New Plant Breeding Techniques

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

La brise de mer est un facteur climatique important pour le zonage viticole des régions viticoles côtières car l’accélération du vent qui lui est associée l’après midi ainsi que l’augmentation de l’humidité relative et la réduction de la température concomitantes sont significatives pour le fonctionnement de la vigne et, par conséquent, la qualité du raisin et du vin

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management.