terclim by ICS banner
IVES 9 IVES Conference Series 9 A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

Abstract

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes. In parallel, we were able to assess the efficiencies of several guide RNAs (gRNAs) targeting genes with fall-out on drought stress and pathogen resilience. To the first aim, a gene belonging to glutathione S-transferase (VvGST40) and two gene belonging to pectin-methyl esterase (VvPME1 and VvPME3) have been targeted. Several edited lines were acclimatized and are currently under evaluation. In parallel, two genes belonging to the Mildew Locus-O (VvMLO6 and VvMLO7) and a non-expressor pathogenesis related gene (VvNPR3) were targeted to improve pathogen resilience. Acclimatized plants edited for MLO genes resulted almost resistant to Erysiphe necator (disease incidence reduction up to 80%), whereas NPR3-edited vines showed a significant reduction in disease severity (up to 70%). In conclusion, our approaches allowed to improve stress resilience of several economically-important genotypes such as Pinot noir, Chardonnay, Sangiovese and Glera but also widely used rootstocks (e.g., 110R and K5BB).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1*, Loredana Moffa1, Anna Narduzzo1, Ivan Bevilacqua1, Irene Perrone2, Chiara Pagliarani2, Giorgio Gambino2, Claudio Lovisolo3, Riccardo Velasco1, Walter Chitarra1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)
2 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

powdery mildew, climate change, recalcitrance, cisgenic-like approach, New Plant Breeding Techniques

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

The aim of this paper was to analyze trends of the meteorological elements and determine suitability of growing grapevine cultivar in viticulture region.