terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

Abstract

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity. Our observations revealed a differential response to the treatments depending on the tested variety. In some varieties, STS treatment enhanced the embryogenic competence of the calluses, while also having a growth-depressing effect on the non-embryogenic calluses. In contrast, the effect of SA was more dose-dependent and varied across different varieties. In some cases, the highest tested concentration of SA had a growth-depressing effect on both embryogenic and non-embryogenic calluses, while in other cases, it only affected embryogenic calluses. Despite these variations, both STS and SA treatments showed promising results in enhancing embryogenic competence, and we are currently evaluating the regeneration of embryos from callus after these treatments and the combined effects of STS and SA. Our study highlights the importance of testing the efficacy of different treatments on multiple grapevine varieties to identify the most effective strategies for NPBT applications.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lucia Rosaria Forleo1*, Bruna Suriano1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Annalisa Prencipe2, Teodora Basile1, Riccardo Velasco1, Maria Francesca Cardone1, Carlo Bergamini1

1 Council for Agricultural Research and Economics -Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy

Contact the author*

Keywords

embryogenic callus, ethylene inhibitor, silver thiosulphate, salicylic acid

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.