terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Abstract

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods. In this study, we compared four different DNA extraction methods to choose the one that quickly isolates DNA from many young vine leaves samples in a single run. The methods used involved Lithium chloride, carboxyl coated magnetic beads, cetyltrimethylammonium bromide (CTAB), and a commercial kit called Red&extract. The results showed that the CTAB method was the best in terms of reliability of the procedure, yield of the extracted DNA, low quantity of inhibitors, and speed of the procedure. Improving the MAS technique will help identify plants containing genes involved in different types of stress and deepen the study of the resistance genes pyramided.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marika Santamaria1,2, Antonella Salerno1,2, Flavia Angela Maria Maggiolini2, Margherita D’Amico2, Carlo Bergamini2, Maria Francesca Cardone2

1 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy, 2 Council for Agricultural Research and Economics -Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Vitis vinifera, Marker Assisted Selection, DNA isolation, breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Les justifications “terroirs” en terme de marketing: les conditions sont réunies pour une rencontre de qualité entre le consommateur moderne et le vin

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.