terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Abstract

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods. In this study, we compared four different DNA extraction methods to choose the one that quickly isolates DNA from many young vine leaves samples in a single run. The methods used involved Lithium chloride, carboxyl coated magnetic beads, cetyltrimethylammonium bromide (CTAB), and a commercial kit called Red&extract. The results showed that the CTAB method was the best in terms of reliability of the procedure, yield of the extracted DNA, low quantity of inhibitors, and speed of the procedure. Improving the MAS technique will help identify plants containing genes involved in different types of stress and deepen the study of the resistance genes pyramided.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marika Santamaria1,2, Antonella Salerno1,2, Flavia Angela Maria Maggiolini2, Margherita D’Amico2, Carlo Bergamini2, Maria Francesca Cardone2

1 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy, 2 Council for Agricultural Research and Economics -Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Vitis vinifera, Marker Assisted Selection, DNA isolation, breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study – Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.