terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Abstract

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods. In this study, we compared four different DNA extraction methods to choose the one that quickly isolates DNA from many young vine leaves samples in a single run. The methods used involved Lithium chloride, carboxyl coated magnetic beads, cetyltrimethylammonium bromide (CTAB), and a commercial kit called Red&extract. The results showed that the CTAB method was the best in terms of reliability of the procedure, yield of the extracted DNA, low quantity of inhibitors, and speed of the procedure. Improving the MAS technique will help identify plants containing genes involved in different types of stress and deepen the study of the resistance genes pyramided.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marika Santamaria1,2, Antonella Salerno1,2, Flavia Angela Maria Maggiolini2, Margherita D’Amico2, Carlo Bergamini2, Maria Francesca Cardone2

1 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy, 2 Council for Agricultural Research and Economics -Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Vitis vinifera, Marker Assisted Selection, DNA isolation, breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.