OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Abstract

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce.

Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

The results showed that technical maturity parameters (TSS, TA, must pH) were not significantly different across the three grapevine age groups. Berry composition showed little differences in quality-relevant metabolite contents, with the noticeable exceptions of α-amino acid, skin flavonols, free and bound monoterpene and norisoprenoid amounts that were significantly higher in vines planted in 2012 compared to older vines, but only in seasons 2014 and 2015 where soil management practices of the young vines differed. Berries from vines planted in 1971 and 1995 did not exhibit significant differences in berry composition, throughout the four seasons. Wine chemical analysis complemented and confirmed results obtained in berry composition. Wine made from grapes produced by vines planted in 2012 had higher terpene and norisoprenoid amounts, compared to wines made with grapes from the two other vines groups, but only for the 2014 and 2015 vintages. Wines from grapes produced by vines planted in 1971 and 1995 did not exhibit significant differences in composition throughout the four seasons.

conclusion:

In conclusion, even though vines planted in 2012 exhibits significant differences in berry and wine composition for their two first vintages compared to older ones, these differences appeared to vanished once the vines were fully established and soil management practices became uniform.

Acknowledgments:

This work was supported by a PhD grant to K. Bou Nader from the Forschungsring Deutscher Weinbau.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Khalil Bou Nader (1, 2), Ghislaine Hilbert (1), Doris Rauhut (3), Christel Renaud (1), Otmar Löhnertz (4), Claus-Dieter Patz (5), Rainer Jung (6), Hans-Reiner Schultz (7), Manfred Stoll (2), Eric Gomes (1) 

1 UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France 
2 Hochschule Geisenheim University (HGU), Department of General and Organic Viticulture,, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
3 Hochschule Geisenheim University (HGU), Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
4 Hochschule Geisenheim University (HGU), Department of Soil Sciences and Plant Nutrition 
5 Hochschule Geisenheim University (HGU), Department of Beverage Sciences, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
6 Hochschule Geisenheim University (HGU), Department of Oenology, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
7 Hochschule Geisenheim University (HGU), Presidency; Von-Lade-Str. 1, 65366, Geisenheim, Germany

Contact the author

Keywords

Grapevine age, vineyard management, berry composition, primary and secondary metabolites

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Oenotannins addition in wine: can be the modulation of redox potential predictable?

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.