OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Abstract

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce.

Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

The results showed that technical maturity parameters (TSS, TA, must pH) were not significantly different across the three grapevine age groups. Berry composition showed little differences in quality-relevant metabolite contents, with the noticeable exceptions of α-amino acid, skin flavonols, free and bound monoterpene and norisoprenoid amounts that were significantly higher in vines planted in 2012 compared to older vines, but only in seasons 2014 and 2015 where soil management practices of the young vines differed. Berries from vines planted in 1971 and 1995 did not exhibit significant differences in berry composition, throughout the four seasons. Wine chemical analysis complemented and confirmed results obtained in berry composition. Wine made from grapes produced by vines planted in 2012 had higher terpene and norisoprenoid amounts, compared to wines made with grapes from the two other vines groups, but only for the 2014 and 2015 vintages. Wines from grapes produced by vines planted in 1971 and 1995 did not exhibit significant differences in composition throughout the four seasons.

conclusion:

In conclusion, even though vines planted in 2012 exhibits significant differences in berry and wine composition for their two first vintages compared to older ones, these differences appeared to vanished once the vines were fully established and soil management practices became uniform.

Acknowledgments:

This work was supported by a PhD grant to K. Bou Nader from the Forschungsring Deutscher Weinbau.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Khalil Bou Nader (1, 2), Ghislaine Hilbert (1), Doris Rauhut (3), Christel Renaud (1), Otmar Löhnertz (4), Claus-Dieter Patz (5), Rainer Jung (6), Hans-Reiner Schultz (7), Manfred Stoll (2), Eric Gomes (1) 

1 UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France 
2 Hochschule Geisenheim University (HGU), Department of General and Organic Viticulture,, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
3 Hochschule Geisenheim University (HGU), Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
4 Hochschule Geisenheim University (HGU), Department of Soil Sciences and Plant Nutrition 
5 Hochschule Geisenheim University (HGU), Department of Beverage Sciences, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
6 Hochschule Geisenheim University (HGU), Department of Oenology, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
7 Hochschule Geisenheim University (HGU), Presidency; Von-Lade-Str. 1, 65366, Geisenheim, Germany

Contact the author

Keywords

Grapevine age, vineyard management, berry composition, primary and secondary metabolites

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

Caractérisation des relations hydriques sol/vigne dans un terroir languedocien

Par le fait d’une politique agricole communautaire axée sur des objectifs de qualité des produits, la recherche et l’identification des critères de cette qualité deviennent impératives. En viticulture, la notion de qualité du produit est rattachée au concept théorique de «terroir». Ce terme englobe un ensemble de paramètres du milieu (géologie, sol, climat) influant sur la récolte.