OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Abstract

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce.

Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

The results showed that technical maturity parameters (TSS, TA, must pH) were not significantly different across the three grapevine age groups. Berry composition showed little differences in quality-relevant metabolite contents, with the noticeable exceptions of α-amino acid, skin flavonols, free and bound monoterpene and norisoprenoid amounts that were significantly higher in vines planted in 2012 compared to older vines, but only in seasons 2014 and 2015 where soil management practices of the young vines differed. Berries from vines planted in 1971 and 1995 did not exhibit significant differences in berry composition, throughout the four seasons. Wine chemical analysis complemented and confirmed results obtained in berry composition. Wine made from grapes produced by vines planted in 2012 had higher terpene and norisoprenoid amounts, compared to wines made with grapes from the two other vines groups, but only for the 2014 and 2015 vintages. Wines from grapes produced by vines planted in 1971 and 1995 did not exhibit significant differences in composition throughout the four seasons.

conclusion:

In conclusion, even though vines planted in 2012 exhibits significant differences in berry and wine composition for their two first vintages compared to older ones, these differences appeared to vanished once the vines were fully established and soil management practices became uniform.

Acknowledgments:

This work was supported by a PhD grant to K. Bou Nader from the Forschungsring Deutscher Weinbau.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Khalil Bou Nader (1, 2), Ghislaine Hilbert (1), Doris Rauhut (3), Christel Renaud (1), Otmar Löhnertz (4), Claus-Dieter Patz (5), Rainer Jung (6), Hans-Reiner Schultz (7), Manfred Stoll (2), Eric Gomes (1) 

1 UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France 
2 Hochschule Geisenheim University (HGU), Department of General and Organic Viticulture,, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
3 Hochschule Geisenheim University (HGU), Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
4 Hochschule Geisenheim University (HGU), Department of Soil Sciences and Plant Nutrition 
5 Hochschule Geisenheim University (HGU), Department of Beverage Sciences, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
6 Hochschule Geisenheim University (HGU), Department of Oenology, Von-Lade-Str. 1, 65366, Geisenheim, Germany 
7 Hochschule Geisenheim University (HGU), Presidency; Von-Lade-Str. 1, 65366, Geisenheim, Germany

Contact the author

Keywords

Grapevine age, vineyard management, berry composition, primary and secondary metabolites

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.