WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Development of bioprospecting tools for oenological applications

Development of bioprospecting tools for oenological applications

Abstract

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process where the sugars in the grapes are transformed into ethanol and carbon dioxide, producing at the same time a large number of additional by-products.

Currently, the demand for indigenous yeast starters, potentially adapted to a defined grape must and reflecting the biodiversity of a particular region, is increasing, supporting the idea that indigenous yeast strains can be associated with a ‘terroir’. Several authors have thus highlighted the action of some non-Saccharomyces species in the chemical composition of wine. Nevertheless, it is still recognised that non-Saccharomyces strains have a low fermentation ability, as they are not able to fully metabolise the sugars in the grape juice and therefore produce low amounts of ethanol, although they have several oenological properties that are fundamental for the organoleptic properties of wine. Thus, the use of a mixed non-Saccharomyces/Saccharomyces ferment, capable of mimicking natural biodiversity, could be a valid alternative to spontaneous fermentation, given the capacity of this ferment to increase the organoleptic properties of the wine and to minimise microbial alterations.

The objectives of this work were to prospect and identify precisely genetically yeasts of interest for the production of fermented beverages according to an innovative protocol in several swiss vineyards, to establish a methodology to phenotypically characterise the isolated yeasts and finally to try to develop a procedure to accompany the winegrowers in their approach of mixed saccharomyces and non-saccharomyces yeasts use.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Benoit Bach, Yannick Barth, Descombes Corentin, Scott Simonin, Marilyn Cléroux, Charles Chappuis, Marie Blackford, Gilles Bourdin, Lefort Francois

Presenting author

Benoit Bach – CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland

YHEPIA, 1254 Jussy, Geneva, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland| CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | AGROSCOPE, 1260 Nyon, Vaud, Switzerland | HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author

Keywords

biosprospection, yeasts, wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.