terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine single-berry clock, practical tools and outcomes 

The grapevine single-berry clock, practical tools and outcomes 

Abstract

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches. To alleviate any statistical bias from pooling unsynchronized fruits, we have gathered a set of approaches on single berries, including non-destructive analysis of time-lapse images, Near InfraRed Spectrometry, basic phenotyping, transcriptomics and metabolomics. In this pertinent reference system, the sugar and acid pathways noticeably accelerated and metabolic transitions were sharpened. Transcripts encoding membrane transporters abruptly switched on during either growth phases were identified, enlightening the special design and bioenergetics of the phloem unloading and vacuolar accumulation pathways, in full quantitative agreement with our new appraisal of the sugar/acidity ratio. Single berries did not depart from strict developmental paths on PCAs from transcriptomic or metabolomic data. It led to the identification of a very small set of genes differentially expressed between clones, without interfering with developmentally regulated ones. This study shows that single berry omics alleviates random noise and temporal ambiguities inherent to mixed fruits, thereby improving the accuracy of the molecular clocks to just a few days. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Mengyao Shi1, Flora Tavernier1, Victoria Lesbats-Sichel1, Stefania Savoi2, Benoit Daviet3, Maxence Cafier3 , Philippe Hugueney4, Raymonde Baltenweck4, Christian Fournier3, Vincent Segura1,5, Laurent Torregrosa3*, and Charles Romieu1*, 5

1 UMR AGAP Institute, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34398 Montpellier, France
2 Department of Agricultural, Forest and Food Sciences, Università di Torino (UniTO), 10095 Grugliasco, Italy
3 UMR LEPSE, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34060 Montpellier, France
4 UMR SVQV, INRAe-Colmar, 68000 Colmar, France
5 UMT Geno-Vigne, IFV-INRAe-Institut Agro Montpeller, 34398 Montpellier, France

Contact the author*

Keywords

Vitis vinifera L., untargeted metabolites, single berry, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

Impact of closures on aroma of godello and torrontés white wines post-bottling

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content.

Using gene editing to improve the hydraulic properties of grapevine roots under water stress conditions

Context and purpose of the study. Epidermal Patterning Factors are a family of small peptides that are highly conserved in the plant kingdom and are involved in several physiological and developmental processes.

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation.