terclim by ICS banner
IVES 9 IVES Conference Series 9 Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Abstract

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications. Our research investigates the early GRBV infection stages, aiming to unravel the “arms race” between the plant’s RNAi machinery and the viral counter-defense strategies. Following an Agrobacterium tumefaciens-mediated infiltration with an infectious clone containing the GRBV genome, we detected a peak of viral activity in infected microvine plants one-week post-infection. Small RNA sequencing from infected tissues identified 21, 22, and 24 nucleotides virus-derived small-interfering RNAs (vsiRNAs), suggesting post-transcriptional and transcriptional gene silencing activity. We utilized a custom bioinformatics pipeline to identify GRBV “hotspots,” that were further validated as RNAi precursors through secondary structure predictions. GRBV-targeted bisulfite sequencing revealed hypermethylation within GRBV hotspots, establishing a crucial link between small RNA production and effective methylation of the virus, culminating at 24 days post-infection (dpi).

Examining the plant transcriptome and methylome during early infection dates (3, 6, 12 and 24 dpi) unveiled molecular strategies employed by both organisms to counteract each other. The multilayered OMICs data we generated constitute the foundation for innovative viral defense strategies.  This strategy could enhance GRBV management, ensuring sustainable vineyard practices by integrating molecular biology insights into agriculture.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

Grapevine Red Blotch Virus (GRBV), Host-virus interactions, small RNA-seq, genome-wide OMICs

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.

The start of Croatian grapevine breeding program

Modern viticulture in Croatia and the world is mainly based on the grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries with the aim of developing resistant varieties possessing high quality level. Coratia is rich in in native grapevine varieties that are the basis of wine production, and are not included in the breeding programs of other countries.