terclim by ICS banner
IVES 9 IVES Conference Series 9 Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Abstract

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications. Our research investigates the early GRBV infection stages, aiming to unravel the “arms race” between the plant’s RNAi machinery and the viral counter-defense strategies. Following an Agrobacterium tumefaciens-mediated infiltration with an infectious clone containing the GRBV genome, we detected a peak of viral activity in infected microvine plants one-week post-infection. Small RNA sequencing from infected tissues identified 21, 22, and 24 nucleotides virus-derived small-interfering RNAs (vsiRNAs), suggesting post-transcriptional and transcriptional gene silencing activity. We utilized a custom bioinformatics pipeline to identify GRBV “hotspots,” that were further validated as RNAi precursors through secondary structure predictions. GRBV-targeted bisulfite sequencing revealed hypermethylation within GRBV hotspots, establishing a crucial link between small RNA production and effective methylation of the virus, culminating at 24 days post-infection (dpi).

Examining the plant transcriptome and methylome during early infection dates (3, 6, 12 and 24 dpi) unveiled molecular strategies employed by both organisms to counteract each other. The multilayered OMICs data we generated constitute the foundation for innovative viral defense strategies.  This strategy could enhance GRBV management, ensuring sustainable vineyard practices by integrating molecular biology insights into agriculture.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

Grapevine Red Blotch Virus (GRBV), Host-virus interactions, small RNA-seq, genome-wide OMICs

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.