terclim by ICS banner
IVES 9 IVES Conference Series 9 Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Abstract

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications. Our research investigates the early GRBV infection stages, aiming to unravel the “arms race” between the plant’s RNAi machinery and the viral counter-defense strategies. Following an Agrobacterium tumefaciens-mediated infiltration with an infectious clone containing the GRBV genome, we detected a peak of viral activity in infected microvine plants one-week post-infection. Small RNA sequencing from infected tissues identified 21, 22, and 24 nucleotides virus-derived small-interfering RNAs (vsiRNAs), suggesting post-transcriptional and transcriptional gene silencing activity. We utilized a custom bioinformatics pipeline to identify GRBV “hotspots,” that were further validated as RNAi precursors through secondary structure predictions. GRBV-targeted bisulfite sequencing revealed hypermethylation within GRBV hotspots, establishing a crucial link between small RNA production and effective methylation of the virus, culminating at 24 days post-infection (dpi).

Examining the plant transcriptome and methylome during early infection dates (3, 6, 12 and 24 dpi) unveiled molecular strategies employed by both organisms to counteract each other. The multilayered OMICs data we generated constitute the foundation for innovative viral defense strategies.  This strategy could enhance GRBV management, ensuring sustainable vineyard practices by integrating molecular biology insights into agriculture.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

Grapevine Red Blotch Virus (GRBV), Host-virus interactions, small RNA-seq, genome-wide OMICs

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...