terclim by ICS banner
IVES 9 IVES Conference Series 9 Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

Abstract

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications. Our research investigates the early GRBV infection stages, aiming to unravel the “arms race” between the plant’s RNAi machinery and the viral counter-defense strategies. Following an Agrobacterium tumefaciens-mediated infiltration with an infectious clone containing the GRBV genome, we detected a peak of viral activity in infected microvine plants one-week post-infection. Small RNA sequencing from infected tissues identified 21, 22, and 24 nucleotides virus-derived small-interfering RNAs (vsiRNAs), suggesting post-transcriptional and transcriptional gene silencing activity. We utilized a custom bioinformatics pipeline to identify GRBV “hotspots,” that were further validated as RNAi precursors through secondary structure predictions. GRBV-targeted bisulfite sequencing revealed hypermethylation within GRBV hotspots, establishing a crucial link between small RNA production and effective methylation of the virus, culminating at 24 days post-infection (dpi).

Examining the plant transcriptome and methylome during early infection dates (3, 6, 12 and 24 dpi) unveiled molecular strategies employed by both organisms to counteract each other. The multilayered OMICs data we generated constitute the foundation for innovative viral defense strategies.  This strategy could enhance GRBV management, ensuring sustainable vineyard practices by integrating molecular biology insights into agriculture.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christian Mandelli1*, Laurent G. Deluc1,2

1 Department of Horticulture, Oregon State University, Corvallis, OR, United States
2 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States

Contact the author*

Keywords

Grapevine Red Blotch Virus (GRBV), Host-virus interactions, small RNA-seq, genome-wide OMICs

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.