The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars
Abstract
Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in europe in the area devoted to vine cultivation. During the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. The increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging. In this perspective, the rnai-conserved mechanism can modulate target pathogen gene expression, activated by the presence of double-stranded rna molecules. Dsrnas can be constitutively expressed in grapevine plants, through genetic engineering techniques since an efficient in vitro regeneration and transformation protocol must be adapted and optimized to the genotype of interest. The generation of grapevine plants expressing hairpin gene constructs aiming at the downregulation of botrytis cinerea dicer-like genes 1 and 2 has been optimized in the model cultivar thompson seedless. Considering modern viticulture, which is based on the cultivation of grapevine cultivars grafted onto hybrid vitis rootstocks, the opportunity of having rootstocks capable of producing active long or small dsrnas targeting fungal rnas could have important implications as new defense strategies. Further experiments of trans-grafting highlighted the potentiality to use the plant expressing lines as rootstocks, opening the possibility to cultivate as a scion the elite cultivars selected.
Influenza di portinnesti rnai nel controllo della muffa grigia in varietà di vite
A livello globale, con una coltivazione di circa 6,7 milioni di ettari, di cui il 51% esclusivamente in europa (faostat, 2021), la produzione di uva da tavola e da vino rappresenta un settore agricolo primario, che ha visto una continua crescita in europa, specialmente nelle aree vocate alla coltivazione della vite. Durante la stagione di crescita, molti organi della pianta possono essere suscettibili all’attacco di molteplici malattie fungine e da oomiceti, che portano a danni economici diretti per la mancata produzione o effetti negativi sulla qualità dei frutti. La crescente scarsità di adeguati prodotti ad azione fungicida, talvolta correlata al relativo impatto sull’ambiente e all’insorgenza di meccanismi di resistenza ai principi attivi nei patogeni, rende la lotta contro queste avversità sempre più ardua. In questa prospettiva, il meccanismo evolutivamente conservato dell’rnai può modulare l’espressione genica dei patogeni target, attivato dalla presenza di molecole di rna a doppio filamento (dsrna). I dsrna possono essere costitutivamente espressi in piante di vite, attraverso tecniche di ingegneria genetica, che richiedono un’ottimizzazione dei protocolli di rigenerazione in vitro e trasformazione adattati ai genotipi di interesse. La produzione di piante esprimenti costrutti genici a forcina atti alla sotto-espressione dei geni dicer-like 1 e 2 di botrytis cinerea è stata ottimizzata nella cultivar modello thompson seedless. Considerando che la moderna viticoltura si basa sulla coltivazione di varietà europee di vite innestate su portinnesti ibridi di vite, l’opportunità di avere portinnesti in grado di produrre lunghi o piccoli rna attivi contro rna di funghi può avere importanti implicazioni come strategia alternativa di difesa. Esperimenti di trans-grafting hanno evidenziato la potenzialità di impiegare le linee geneticamente modificate come portinnesti, aprendo la possibilità di innestare su di essi le cultivar di vite selezionate.
Issue: OIV 2024
Type: Article
Authors
¹ Marche Polytechnic University, Via Brecce Bianche 10, Ancona, Italy
² University of Verona, Strada Le Grazie 15, Verona, Italy
³ University of California, Riverside, 900 University Ave, Riverside, United States of America
⁴ Vitroplant Italia S.r.l, Via Loreto 170, Cesena, Italy
⁵ Ampelos, Via Tebano 45, Faenza, Italy
⁶ Consorzio Fitosanitario di Modena e Reggio Emilia, Via Gualerzi 32, Reggio Emilia, Italy