terclim by ICS banner
IVES 9 IVES Conference Series 9 Activation of retrotransposition in grapevine

Activation of retrotransposition in grapevine

Abstract

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci. Combining insights into insertional patterns with both short and long read transcriptome data has highlighted that only a small number of families and within these families and an even smaller number of discrete loci are responsible for ongoing retrotransposition. We are currently exploring means to alter the epigenomic landscape of grape genomes to allow heightened retrotransposon activity and thus mobilization. We will present how we are tracking this mobility using virus-like protein particle analysis (VLP-seq) to both identify families actively transposing and to study the genomic and epigenomic impact of this mobility prior to purifying selection.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christopher Winefield1*, Suguru Sugiyama1,2, Haniyeh Shahab1,2, Annabel Whibley2, Darrell Lizamore2

1 Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln university, New Zealand
2 Bragato Research Institute, Lincoln University, New Zealand

Contact the author*

Keywords

Grapevine, Transposon, Genomics, Epigenomics, Climate Adaptation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Modulation of the tannic structure of Tannat wines through maceration techniques: cross analytical and sensory study

The Tannat grape, native to the foothills of the Pyrenees in France, is known for producing wines with intense colour, exceptional tannic structure, and remarkable aging potential. These distinctive characteristics are attributed to its unique genome, making Tannat one of the grape varieties with the highest tannins concentration.

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.