terclim by ICS banner
IVES 9 IVES Conference Series 9 Activation of retrotransposition in grapevine

Activation of retrotransposition in grapevine

Abstract

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci. Combining insights into insertional patterns with both short and long read transcriptome data has highlighted that only a small number of families and within these families and an even smaller number of discrete loci are responsible for ongoing retrotransposition. We are currently exploring means to alter the epigenomic landscape of grape genomes to allow heightened retrotransposon activity and thus mobilization. We will present how we are tracking this mobility using virus-like protein particle analysis (VLP-seq) to both identify families actively transposing and to study the genomic and epigenomic impact of this mobility prior to purifying selection.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christopher Winefield1*, Suguru Sugiyama1,2, Haniyeh Shahab1,2, Annabel Whibley2, Darrell Lizamore2

1 Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln university, New Zealand
2 Bragato Research Institute, Lincoln University, New Zealand

Contact the author*

Keywords

Grapevine, Transposon, Genomics, Epigenomics, Climate Adaptation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).