terclim by ICS banner
IVES 9 IVES Conference Series 9 Activation of retrotransposition in grapevine

Activation of retrotransposition in grapevine

Abstract

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci. Combining insights into insertional patterns with both short and long read transcriptome data has highlighted that only a small number of families and within these families and an even smaller number of discrete loci are responsible for ongoing retrotransposition. We are currently exploring means to alter the epigenomic landscape of grape genomes to allow heightened retrotransposon activity and thus mobilization. We will present how we are tracking this mobility using virus-like protein particle analysis (VLP-seq) to both identify families actively transposing and to study the genomic and epigenomic impact of this mobility prior to purifying selection.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Christopher Winefield1*, Suguru Sugiyama1,2, Haniyeh Shahab1,2, Annabel Whibley2, Darrell Lizamore2

1 Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln university, New Zealand
2 Bragato Research Institute, Lincoln University, New Zealand

Contact the author*

Keywords

Grapevine, Transposon, Genomics, Epigenomics, Climate Adaptation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Plant biostimulants in combination treatments as environmentally-friendly rest-breaking agents for dormancy release in table grapes Vitis vinifera Crimson Seedless

Context and purpose of the study. Vitis vinifera grapevine is a perennial crop which is globally cultivated, surviving cold winters in temperate zones by entering a state of dormancy.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.