Terroir 2016 banner
IVES 9 IVES Conference Series 9 Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Abstract

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy. The treatments compared were: IM: inter-row application of compost from cattle manure, at a rate of 4 t/ha/y fresh weight (fw); IW: inter-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); UW: under-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); C: control with no amendment/fertilization. Effects on soil characteristics and on vine performances, including root density and distribution, were assessed. IW treatment showed the best overall performance, displaying well-balanced root/shoot growth, increased yield, and satisfactory grape quality. Inter-row addition of compost from cattle manure (IM) and localized addition of compost from pruning wastes (UW) stimulated ether high vegetative growth or high root development and in both cases, a reduction in fruit quality was observed, likely due to competition between vegetative organs (shoots or roots) and the fruit.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Federica Gaiotti (1), Patrick Marcuzzo (1), Nicola Belfiore (1), Lorenzo Lovat (1), Diego Tomasi (1)

(1) CREA – Centro di ricerca per la viticoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, 31015 Conegliano, Italy

Contact the author

Keywords

compost, organic amendments, root system, grapevine, soil management practices

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].