Terroir 2016 banner
IVES 9 IVES Conference Series 9 Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Abstract

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy. The treatments compared were: IM: inter-row application of compost from cattle manure, at a rate of 4 t/ha/y fresh weight (fw); IW: inter-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); UW: under-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); C: control with no amendment/fertilization. Effects on soil characteristics and on vine performances, including root density and distribution, were assessed. IW treatment showed the best overall performance, displaying well-balanced root/shoot growth, increased yield, and satisfactory grape quality. Inter-row addition of compost from cattle manure (IM) and localized addition of compost from pruning wastes (UW) stimulated ether high vegetative growth or high root development and in both cases, a reduction in fruit quality was observed, likely due to competition between vegetative organs (shoots or roots) and the fruit.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Federica Gaiotti (1), Patrick Marcuzzo (1), Nicola Belfiore (1), Lorenzo Lovat (1), Diego Tomasi (1)

(1) CREA – Centro di ricerca per la viticoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, 31015 Conegliano, Italy

Contact the author

Keywords

compost, organic amendments, root system, grapevine, soil management practices

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

Temperature variations in the Walla Walla valley American Viticultural Area

Variations in average growing season and ripening season temperatures within the Walla Walla Valley American Viticultural Area are related to elevation and regional and local topography.

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).