Terroir 2016 banner
IVES 9 IVES Conference Series 9 Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

Abstract

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy. The treatments compared were: IM: inter-row application of compost from cattle manure, at a rate of 4 t/ha/y fresh weight (fw); IW: inter-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); UW: under-row application of compost from vineyard pruning waste, at 4 t/ha/y (fw); C: control with no amendment/fertilization. Effects on soil characteristics and on vine performances, including root density and distribution, were assessed. IW treatment showed the best overall performance, displaying well-balanced root/shoot growth, increased yield, and satisfactory grape quality. Inter-row addition of compost from cattle manure (IM) and localized addition of compost from pruning wastes (UW) stimulated ether high vegetative growth or high root development and in both cases, a reduction in fruit quality was observed, likely due to competition between vegetative organs (shoots or roots) and the fruit.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Federica Gaiotti (1), Patrick Marcuzzo (1), Nicola Belfiore (1), Lorenzo Lovat (1), Diego Tomasi (1)

(1) CREA – Centro di ricerca per la viticoltura, Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, 31015 Conegliano, Italy

Contact the author

Keywords

compost, organic amendments, root system, grapevine, soil management practices

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Bilan de l’impact des pratiques viticoles sur la qualité biologique des sols

Dans le cadre de TerclimPro 2025, Laure Gontier a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8481

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.