terclim by ICS banner
IVES 9 IVES Conference Series 9 A comprehensive and accurate annotation for the grapevine T2T genome 

A comprehensive and accurate annotation for the grapevine T2T genome 

Abstract

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia. The pipeline includes both structural and functional annotation of genes, including lncRNAs and miRNAs. Moreover, we provide conversions between different annotation versions, allowing the comparison and integration of various grapevine datasets. To ensure transparency and traceability, we have modified the structure of the gene IDs, retaining the Vitvi prefix but also referencing the genome version and annotation. This will allow us to handle any gene model issues between different annotation versions and to easily distinguish the version from the annotation in publications. The annotation workflow will soon be available on the Grapedia portal (https://grapedia.org/), where it can potentially be applied to other cultivars. This annotation version will also serve as the basis for the new grape gene reference catalogue, which will provide a comprehensive and updated resource for grapevine genomics.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Antonio Santiago1,2, David Navarro-Payá1, Pascual Villalba-Bermell1, Gustavo G. Gomez1, Iñigo De Martín Agirre1, Amandine Velt3, Marco Moretto4, Hua Xiao 5*, Yongfeng Zhou 5*, Camille Rustenholz3*, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Universitat Politècnica de València (UPV), 46022 Valencia, Spain
3 SVQV, INRAE-University of Strasbourg, Colmar 68000, France
4 Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
5 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

Contact the author*

Keywords

Bioinformatics, genome annotation, grapevine, Grapedia, PN40024

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.

Exploring between- and within-vineyard variability of “Malvasia di Candia aromatica” vineyards from Colli Piacentini

Several studies demonstrated how climate and soil may be key drivers of variability at different scales.

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.