terclim by ICS banner
IVES 9 IVES Conference Series 9 A comprehensive and accurate annotation for the grapevine T2T genome 

A comprehensive and accurate annotation for the grapevine T2T genome 

Abstract

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia. The pipeline includes both structural and functional annotation of genes, including lncRNAs and miRNAs. Moreover, we provide conversions between different annotation versions, allowing the comparison and integration of various grapevine datasets. To ensure transparency and traceability, we have modified the structure of the gene IDs, retaining the Vitvi prefix but also referencing the genome version and annotation. This will allow us to handle any gene model issues between different annotation versions and to easily distinguish the version from the annotation in publications. The annotation workflow will soon be available on the Grapedia portal (https://grapedia.org/), where it can potentially be applied to other cultivars. This annotation version will also serve as the basis for the new grape gene reference catalogue, which will provide a comprehensive and updated resource for grapevine genomics.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Antonio Santiago1,2, David Navarro-Payá1, Pascual Villalba-Bermell1, Gustavo G. Gomez1, Iñigo De Martín Agirre1, Amandine Velt3, Marco Moretto4, Hua Xiao 5*, Yongfeng Zhou 5*, Camille Rustenholz3*, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Universitat Politècnica de València (UPV), 46022 Valencia, Spain
3 SVQV, INRAE-University of Strasbourg, Colmar 68000, France
4 Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
5 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

Contact the author*

Keywords

Bioinformatics, genome annotation, grapevine, Grapedia, PN40024

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.