terclim by ICS banner
IVES 9 IVES Conference Series 9 A comprehensive and accurate annotation for the grapevine T2T genome 

A comprehensive and accurate annotation for the grapevine T2T genome 

Abstract

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia. The pipeline includes both structural and functional annotation of genes, including lncRNAs and miRNAs. Moreover, we provide conversions between different annotation versions, allowing the comparison and integration of various grapevine datasets. To ensure transparency and traceability, we have modified the structure of the gene IDs, retaining the Vitvi prefix but also referencing the genome version and annotation. This will allow us to handle any gene model issues between different annotation versions and to easily distinguish the version from the annotation in publications. The annotation workflow will soon be available on the Grapedia portal (https://grapedia.org/), where it can potentially be applied to other cultivars. This annotation version will also serve as the basis for the new grape gene reference catalogue, which will provide a comprehensive and updated resource for grapevine genomics.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Antonio Santiago1,2, David Navarro-Payá1, Pascual Villalba-Bermell1, Gustavo G. Gomez1, Iñigo De Martín Agirre1, Amandine Velt3, Marco Moretto4, Hua Xiao 5*, Yongfeng Zhou 5*, Camille Rustenholz3*, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Universitat Politècnica de València (UPV), 46022 Valencia, Spain
3 SVQV, INRAE-University of Strasbourg, Colmar 68000, France
4 Fondazione Edmund Mach Via E. Mach 1, Research and Innovation Centre, Via E. Mach 1, 38010 San Michele all’Adige, Italy
5 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

Contact the author*

Keywords

Bioinformatics, genome annotation, grapevine, Grapedia, PN40024

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).