terclim by ICS banner
IVES 9 IVES Conference Series 9 Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

Abstract

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest. Several novel (not previously annotated in the Pinot noir reference genome PN40024 12X) and varietal (not in the reference genome) genes showed differential expression associated with color change during veraison. Expression of a novel F3’5’H gene and a varietal F3’H gene was confirmed by RT-qPCR in the same samples used for RNA-Seq and in another growing season. This work establishes the specific expression fingerprint for gene families (CHS, CHI, F3H, F3’H, F3’5’H, DFR, LDOX, 3GT, OMT, MYBA1, MYBA2, MYBA3) directly involved in anthocyanin biosynthesis and regulation during Tannat veraison.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cecilia C. Da Silva1*, Eduardo Boido2, Carina Gaggero3, Massimo Delledonne4, Francisco Carrau2

1 PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
2 Área Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
3 Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
4 Centro di Genomica Funzionale, Dipartimento di Biotecnologie, Universitá degli Studi di Verona, Verona, Italy

Contact the author*

Keywords

Anthocyanins, Vitis vinifera, Tannat, RNA-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Research summary on the use of Terroir as a wine purchasing cue

Due to the current challenging nature of the global wine market, and recent growth in number and strength of competitors from non-traditional wine producing countries, European wine producers are focussing on the potential to develop a competitive advantage through the concept of terroir.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.

Grapevine genotypes differ in xylem vessel occlusion after winter pruning 

Grapevines are continually wounded throughout their cultivation especially during winter pruning. Grapevines respond to wounding by occluding xylem vessels with gels or tyloses to limit pathogen attack and dehydration of the tissues. Although the production of xylem vessel occlusions has been studied in grapevine, to date we have no knowledge of whether different genotypes respond differently. The objective of this study was to characterize the genetic variation in xylem vessel occulsions in five different scion genotypes pruned at different dates.