terclim by ICS banner
IVES 9 IVES Conference Series 9 Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

Abstract

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest. Several novel (not previously annotated in the Pinot noir reference genome PN40024 12X) and varietal (not in the reference genome) genes showed differential expression associated with color change during veraison. Expression of a novel F3’5’H gene and a varietal F3’H gene was confirmed by RT-qPCR in the same samples used for RNA-Seq and in another growing season. This work establishes the specific expression fingerprint for gene families (CHS, CHI, F3H, F3’H, F3’5’H, DFR, LDOX, 3GT, OMT, MYBA1, MYBA2, MYBA3) directly involved in anthocyanin biosynthesis and regulation during Tannat veraison.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cecilia C. Da Silva1*, Eduardo Boido2, Carina Gaggero3, Massimo Delledonne4, Francisco Carrau2

1 PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
2 Área Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
3 Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
4 Centro di Genomica Funzionale, Dipartimento di Biotecnologie, Universitá degli Studi di Verona, Verona, Italy

Contact the author*

Keywords

Anthocyanins, Vitis vinifera, Tannat, RNA-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

Application of viticulture zoning in Istria (Croatia) as important element for valorization of all territory resources (product, environment, tourism and others)

Un projet touristique innovant est en cours dans la zone historique croate d’Istrie Centrale, autour de la magnifique ville de Motovun. L’approche méthodologique repose sur le concept de «Système Productif-Global du Territoire» et s’appuie tout particulièrement sur celui de « Zonage Vitivinicole ». Elle tient compte de toutes les facettes, définies dans celui de « Grand Zonage » (Cargnello G., 1999).

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.