terclim by ICS banner
IVES 9 IVES Conference Series 9 Defining gene regulation and co-regulation at single cell resolution in grapevine

Defining gene regulation and co-regulation at single cell resolution in grapevine

Abstract

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect. By bioinformatics approaches we will identify cell and gene clusters, interpreting the heterogeneity from single-cell transcriptomes; subsequently, we will perform in situ hybridizations to corroborate already predicted cell-type annotations and to identify new cell-type marker genes, required for the cell identity definition, and for the experimental validations of scRNA-seq data. The realization of a single cell resolution spatiotemporal transcriptomic and chromatin accessibility map of grapevine berry will allow to link gene expression profiles to cellular and developmental processes, uncovering part of the molecular mechanisms of ripening and slowly providing the key in maintaining high quality grapes and wine. Building organ-scale gene expression maps is essential to drive technological innovation such as reprogramming cell identity and inducing phenotypic changes via cell-type-specific gene editing.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Michele Morgante2, Paola Paci3, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy
2IGA and Department of Agri-food, Environmental and Animal Sciences, University of Udine, Italy
3Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy

Contact the author*

Keywords

Single-cell RNA-seq, single nucleus ATAC-seq, gene expression regulation, gene network, developmental trajectories

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Citizen science for promoting a disease-resistant grape variety through a wine competition

The societal pressure to reduce the use of pesticides in Switzerland is steadily increasing. Viticulture is particularly in focus due to the frequent use of fungicides to combat downy and powdery mildew.

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.