terclim by ICS banner
IVES 9 IVES Conference Series 9 Defining gene regulation and co-regulation at single cell resolution in grapevine

Defining gene regulation and co-regulation at single cell resolution in grapevine

Abstract

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect. By bioinformatics approaches we will identify cell and gene clusters, interpreting the heterogeneity from single-cell transcriptomes; subsequently, we will perform in situ hybridizations to corroborate already predicted cell-type annotations and to identify new cell-type marker genes, required for the cell identity definition, and for the experimental validations of scRNA-seq data. The realization of a single cell resolution spatiotemporal transcriptomic and chromatin accessibility map of grapevine berry will allow to link gene expression profiles to cellular and developmental processes, uncovering part of the molecular mechanisms of ripening and slowly providing the key in maintaining high quality grapes and wine. Building organ-scale gene expression maps is essential to drive technological innovation such as reprogramming cell identity and inducing phenotypic changes via cell-type-specific gene editing.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Michele Morgante2, Paola Paci3, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy
2IGA and Department of Agri-food, Environmental and Animal Sciences, University of Udine, Italy
3Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy

Contact the author*

Keywords

Single-cell RNA-seq, single nucleus ATAC-seq, gene expression regulation, gene network, developmental trajectories

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.

Effect of auxin treatment on delaying maturation of grape cultivars in the Valpolicella viticultural area

The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.