terclim by ICS banner
IVES 9 IVES Conference Series 9 Defining gene regulation and co-regulation at single cell resolution in grapevine

Defining gene regulation and co-regulation at single cell resolution in grapevine

Abstract

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect. By bioinformatics approaches we will identify cell and gene clusters, interpreting the heterogeneity from single-cell transcriptomes; subsequently, we will perform in situ hybridizations to corroborate already predicted cell-type annotations and to identify new cell-type marker genes, required for the cell identity definition, and for the experimental validations of scRNA-seq data. The realization of a single cell resolution spatiotemporal transcriptomic and chromatin accessibility map of grapevine berry will allow to link gene expression profiles to cellular and developmental processes, uncovering part of the molecular mechanisms of ripening and slowly providing the key in maintaining high quality grapes and wine. Building organ-scale gene expression maps is essential to drive technological innovation such as reprogramming cell identity and inducing phenotypic changes via cell-type-specific gene editing.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Michele Morgante2, Paola Paci3, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy
2IGA and Department of Agri-food, Environmental and Animal Sciences, University of Udine, Italy
3Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy

Contact the author*

Keywords

Single-cell RNA-seq, single nucleus ATAC-seq, gene expression regulation, gene network, developmental trajectories

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.

Microwaves, an auxiliary tool to improve red wine quality in warm climates

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].