terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

Abstract

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo. The RNA-seq libraries were sequenced on NovaSeq 6000 Illumina platform (2×150 bp, paired-end). The application of elicitors showed a differential gene expression level with respect to control plants shortly after their application. In terms of the biosynthesis of phenolic compounds, all three elicitors demonstrated an inhibition of tannin-synthesizing genes while promoting anthocyanin synthesis. Changes in sugar accumulation were also observed; all three elicitors caused an underexpression of monosaccharide synthesis related genes. In addition, the application of elicitors overexpressed key enzymes in cell wall reformulation, such as xyloglucan endotransglucosylases/hydrolases. Conversely, some adverse effects on genes related to aroma and stress response, among others, were found. To sum up, the application of elicitors might be beneficial for the advance of anthocyanin synthesis and sugar accumulation delay.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Libe Renteria1, Juan Velasco1, Manuel Alfaro1,2, Nazareth Torres1,2*, Sara Crespo1,2, Ana Fernández-Morales1, Maite Loidi1, Gonzaga Santesteban1,2, Jorge Urrestarazu1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain

Contact the author*

Keywords

phenolic compounds, anthocyanins, climate change, transcriptomics, sugars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).