terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

Abstract

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo. The RNA-seq libraries were sequenced on NovaSeq 6000 Illumina platform (2×150 bp, paired-end). The application of elicitors showed a differential gene expression level with respect to control plants shortly after their application. In terms of the biosynthesis of phenolic compounds, all three elicitors demonstrated an inhibition of tannin-synthesizing genes while promoting anthocyanin synthesis. Changes in sugar accumulation were also observed; all three elicitors caused an underexpression of monosaccharide synthesis related genes. In addition, the application of elicitors overexpressed key enzymes in cell wall reformulation, such as xyloglucan endotransglucosylases/hydrolases. Conversely, some adverse effects on genes related to aroma and stress response, among others, were found. To sum up, the application of elicitors might be beneficial for the advance of anthocyanin synthesis and sugar accumulation delay.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Libe Renteria1, Juan Velasco1, Manuel Alfaro1,2, Nazareth Torres1,2*, Sara Crespo1,2, Ana Fernández-Morales1, Maite Loidi1, Gonzaga Santesteban1,2, Jorge Urrestarazu1,2

1 Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona-Iruña, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona-Iruña, Spain

Contact the author*

Keywords

phenolic compounds, anthocyanins, climate change, transcriptomics, sugars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.