OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

Abstract

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

The wine quality is closely related to its aromatic expression, influenced by the grape variety, viticultural management techniques and environmental factors, such as soil and climate (3). It has been shown that the soil influences the taste of wines and the typicity of organoleptic expression. This is largely mediated by the availability of water and nitrogen (4). The climate effect is mediated by air temperature and water balance (5).

The volatile compounds developed during wine aging and involved in the expression of the bouquet may be affected by vine water and nitrogen status (6). High nitrogen status in vines favors high nitrogen levels in both grape berries and wine. Thus, compounds such as tabanone, DMS, esters and aromatic heterocycles were measured in aged Bordeaux and Champagne reserve wines. Their concentrations were correlated to the water and nitrogen status in vine (evaluated during the season for the year production with Bordeaux vine) and the amino acids concentration in wines for Champagne reserve wine.

For both wines types, it has been revealed that the vine nitrogen status and the wine nitrogen composition have an important role on DMS, ester and aromatic heterocycles formation. Furthermore, a correlation between tabanones concentrations and the vine water status was observed.

Data collection for both red Bordeaux and Champagne reserve wines, which bouquet is well disguised, highlighted that nitrogen is involved in the various stages, common and/or different for both wine type, from vine formation to aged wine.

references:

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122.
(2) Tominaga, T.; Guimbertau, G.; Dubourdieu, D. J. Agric. Food Chem. 2003, 51 (4), 1016–1020.
(3) Jackson, D. I.; Lombard, P. B. Am. J. Enol. Vitic. 1993, 44 (4), 409–430.
(4) Van Leeuwen, C.; Seguin, G. J. Wine Res. 2006, 17 (1), 1–10.
(5) van Leeuwen, C. In Managing Wine Quality; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2010; Vol. 1, pp 273–315.
(6) Picard, M.; van Leeuwen, C.; Guyon, F.; Gaillard, L.; de Revel, G.; Marchand, S. Vine Front. Chem. 2017, 5

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nicolas Le Menn (1, 4), Cornelis Van Leeuwen (3), Richard Marchal (2), Gilles de Revel (1), Dominique Demarville (4), Stéphanie Marchand (1) 

1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France 
2) Univ. de Reims Champagne-Ardenne, URVVC EA 4707, BP-1039 51687 , Reims, Cedex 2, France 
3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France 
4) Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France 

Contact the author

Keywords

Ageing, Nitrogen status , Aromas, vines

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Report on the work carried out by the zoning group of the O.I.V.

La création officielle du groupe Experts Zonage Vitivinicole à l’O.I.V., qui s’inscrit dans la Commission Viticulture, est récente. Le Professeur Mario FREGONI en assure la présidence depuis 1998, assisté du vice-président et du secrétaire général Mario FALCETTI. Ils ont été confirmés dans leurs fonctions lors des sessions de mars 2001. Actuellement, le groupe d’experts Zonage Vitivinicole de l’O.I.V. se compose de 40 délégués, représentant 18 pays membres. La mise en place de ce groupe a tout d’abord été initiée par l’Instituto Agrario de San Michele (Italie) et l’Unité de Recherches Vigne et Vin du Centre INRA d’Angers (France). Une collaboration entre les chercheurs s’est installée très tôt, dès 1987.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).