OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

Abstract

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

The wine quality is closely related to its aromatic expression, influenced by the grape variety, viticultural management techniques and environmental factors, such as soil and climate (3). It has been shown that the soil influences the taste of wines and the typicity of organoleptic expression. This is largely mediated by the availability of water and nitrogen (4). The climate effect is mediated by air temperature and water balance (5).

The volatile compounds developed during wine aging and involved in the expression of the bouquet may be affected by vine water and nitrogen status (6). High nitrogen status in vines favors high nitrogen levels in both grape berries and wine. Thus, compounds such as tabanone, DMS, esters and aromatic heterocycles were measured in aged Bordeaux and Champagne reserve wines. Their concentrations were correlated to the water and nitrogen status in vine (evaluated during the season for the year production with Bordeaux vine) and the amino acids concentration in wines for Champagne reserve wine.

For both wines types, it has been revealed that the vine nitrogen status and the wine nitrogen composition have an important role on DMS, ester and aromatic heterocycles formation. Furthermore, a correlation between tabanones concentrations and the vine water status was observed.

Data collection for both red Bordeaux and Champagne reserve wines, which bouquet is well disguised, highlighted that nitrogen is involved in the various stages, common and/or different for both wine type, from vine formation to aged wine.

references:

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122.
(2) Tominaga, T.; Guimbertau, G.; Dubourdieu, D. J. Agric. Food Chem. 2003, 51 (4), 1016–1020.
(3) Jackson, D. I.; Lombard, P. B. Am. J. Enol. Vitic. 1993, 44 (4), 409–430.
(4) Van Leeuwen, C.; Seguin, G. J. Wine Res. 2006, 17 (1), 1–10.
(5) van Leeuwen, C. In Managing Wine Quality; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2010; Vol. 1, pp 273–315.
(6) Picard, M.; van Leeuwen, C.; Guyon, F.; Gaillard, L.; de Revel, G.; Marchand, S. Vine Front. Chem. 2017, 5

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nicolas Le Menn (1, 4), Cornelis Van Leeuwen (3), Richard Marchal (2), Gilles de Revel (1), Dominique Demarville (4), Stéphanie Marchand (1) 

1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France 
2) Univ. de Reims Champagne-Ardenne, URVVC EA 4707, BP-1039 51687 , Reims, Cedex 2, France 
3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33882 Villenave d’Ornon, France 
4) Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France 

Contact the author

Keywords

Ageing, Nitrogen status , Aromas, vines

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.