terclim by ICS banner
IVES 9 IVES Conference Series 9 Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Abstract

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field. The system uses automatic weighing mini-lysimeters to record whole-plant evapotranspiration throughout the growing season and manage deficit irrigation programs for drought trials, as well as infrared lamps to heat the cluster zone above ambient temperature. Drought stress was imposed at 25% soil field capacity for 9 days, during which a heat stress of 5 days was induced with infrared lamps set to 800W at 30cm from the fruiting cane. Grapevine ecophysiology was monitored throughout the experimental period. The system successfully allowed us to control grapevine evapotranspiration, lowering both leaf stomatal conductance (gsw) and midday stem water potential (Ψstem), as well as increase berry surface temperatures, with a mean increment of 3.6°C. These results provided insight into the efficacy of the system in imposing stress in the field, as well as into possible further improvements for the setup, taking into consideration the constraints of the system as well as undesired effects of changing weather during the experiment.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jacopo Innocenti1*, Elena Farolfi1, Francesco Flagiello1, Rudi Rizzoli1, Soma Laszlo Tarnay1, Astrid Forneck1, José Carlos Herrera1

1 Institute for Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz Straße, 3430, Tulln an der Donau, Austria

Contact the author*

Keywords

abiotic stress, climate change, heatwaves, phenotyping, method development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.