terclim by ICS banner
IVES 9 IVES Conference Series 9 Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Abstract

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field. The system uses automatic weighing mini-lysimeters to record whole-plant evapotranspiration throughout the growing season and manage deficit irrigation programs for drought trials, as well as infrared lamps to heat the cluster zone above ambient temperature. Drought stress was imposed at 25% soil field capacity for 9 days, during which a heat stress of 5 days was induced with infrared lamps set to 800W at 30cm from the fruiting cane. Grapevine ecophysiology was monitored throughout the experimental period. The system successfully allowed us to control grapevine evapotranspiration, lowering both leaf stomatal conductance (gsw) and midday stem water potential (Ψstem), as well as increase berry surface temperatures, with a mean increment of 3.6°C. These results provided insight into the efficacy of the system in imposing stress in the field, as well as into possible further improvements for the setup, taking into consideration the constraints of the system as well as undesired effects of changing weather during the experiment.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jacopo Innocenti1*, Elena Farolfi1, Francesco Flagiello1, Rudi Rizzoli1, Soma Laszlo Tarnay1, Astrid Forneck1, José Carlos Herrera1

1 Institute for Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz Straße, 3430, Tulln an der Donau, Austria

Contact the author*

Keywords

abiotic stress, climate change, heatwaves, phenotyping, method development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Aptitude du cépage Chenin à l’élaboration de vins liquoreux en relation avec certaines unités terroirs de base de A.O.C. Coteaux du Layon

Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.