terclim by ICS banner
IVES 9 IVES Conference Series 9 Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Abstract

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field. The system uses automatic weighing mini-lysimeters to record whole-plant evapotranspiration throughout the growing season and manage deficit irrigation programs for drought trials, as well as infrared lamps to heat the cluster zone above ambient temperature. Drought stress was imposed at 25% soil field capacity for 9 days, during which a heat stress of 5 days was induced with infrared lamps set to 800W at 30cm from the fruiting cane. Grapevine ecophysiology was monitored throughout the experimental period. The system successfully allowed us to control grapevine evapotranspiration, lowering both leaf stomatal conductance (gsw) and midday stem water potential (Ψstem), as well as increase berry surface temperatures, with a mean increment of 3.6°C. These results provided insight into the efficacy of the system in imposing stress in the field, as well as into possible further improvements for the setup, taking into consideration the constraints of the system as well as undesired effects of changing weather during the experiment.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jacopo Innocenti1*, Elena Farolfi1, Francesco Flagiello1, Rudi Rizzoli1, Soma Laszlo Tarnay1, Astrid Forneck1, José Carlos Herrera1

1 Institute for Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz Straße, 3430, Tulln an der Donau, Austria

Contact the author*

Keywords

abiotic stress, climate change, heatwaves, phenotyping, method development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The environmental impact of viticulture: analysis of the influence type of biofertilisers on wine quality and microbiology activity of soil

The trial was conducted in variety/rootstock Riesling/Kober 5 BB in the vineyard district of Vrsac. The vineyard was planted in 1996 on a south-facing slope, with rectangular type pruning of 3×1 m. The training system is of symmetric cordon type and mixed type pruning is practiced.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out.