terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Abstract

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).  This set of four combinations is replicated 72 times in a randomized block experimental design with an irrigation treatment. Over the course of three years we quantified leaf elemental concentration, leaf transcriptome, leaf metabolome and epigenome, among others. Analyses in the ‘Chambourcin’ vineyard reveal extensive and dynamic phenotypic variation in ‘Chambourcin’ that reflects complex interactions among rootstock genotype, irrigation, season, and year. Specific effects of rootstock genotype on gene expression and elemental concentration were detected and vary with season and year. Variation in ion concentrations is also influenced by leaf position along the vine. This comprehensive, multi-year project demonstrates the importance of root system variation for shoot system morphology and suggests future exploration of rootstock genotypic diversity might offer a novel source of variation for shoot system phenotypic manipulation. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Allison Miller, Mani Awale, Anne Fennell, Zach Harris, Laszlo Kovacs, Misha Kwasniewski, Jason Londo, Zoe Migicovksy, Brigette Williams

Saint Louis University and the Danforth Plant Science Center; University of Missouri; South Dakota State University; Taylor Geospatial Institute; Missouri State University; Penn State University

Keywords

grafting, phenotyping, transcriptomics, epigenomics, ionomics 

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Cinétique de développement de la Pourriture Noble dans différents terroirs des Coteaux du Layon : mise au point d’une méthodologie

Dans la région des Coteaux du Layon, en Maine et Loire, l’effet terroir et son déterminisme sont étudiés dans le cadre de la production des vins liquoreux. Ces vins sont le résultat d’une maturité poussée au delà de celle prévue par la nature afin de donner aux baies une teneur en sucre et en matière sèche très forte, pour mieux valoriser ces effets de la surmaturation, les baies sont récoltées selon la méthode des tries successives (Asselin et al, 1996). Ainsi, on ne récolte à chaque passage que les grains ayant atteint le niveau de concentration requis pour obtenir des vins à fort degré d’alcool avec des sucres résiduels.

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.