terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Abstract

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).  This set of four combinations is replicated 72 times in a randomized block experimental design with an irrigation treatment. Over the course of three years we quantified leaf elemental concentration, leaf transcriptome, leaf metabolome and epigenome, among others. Analyses in the ‘Chambourcin’ vineyard reveal extensive and dynamic phenotypic variation in ‘Chambourcin’ that reflects complex interactions among rootstock genotype, irrigation, season, and year. Specific effects of rootstock genotype on gene expression and elemental concentration were detected and vary with season and year. Variation in ion concentrations is also influenced by leaf position along the vine. This comprehensive, multi-year project demonstrates the importance of root system variation for shoot system morphology and suggests future exploration of rootstock genotypic diversity might offer a novel source of variation for shoot system phenotypic manipulation. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Allison Miller, Mani Awale, Anne Fennell, Zach Harris, Laszlo Kovacs, Misha Kwasniewski, Jason Londo, Zoe Migicovksy, Brigette Williams

Saint Louis University and the Danforth Plant Science Center; University of Missouri; South Dakota State University; Taylor Geospatial Institute; Missouri State University; Penn State University

Keywords

grafting, phenotyping, transcriptomics, epigenomics, ionomics 

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.