terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Abstract

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).  This set of four combinations is replicated 72 times in a randomized block experimental design with an irrigation treatment. Over the course of three years we quantified leaf elemental concentration, leaf transcriptome, leaf metabolome and epigenome, among others. Analyses in the ‘Chambourcin’ vineyard reveal extensive and dynamic phenotypic variation in ‘Chambourcin’ that reflects complex interactions among rootstock genotype, irrigation, season, and year. Specific effects of rootstock genotype on gene expression and elemental concentration were detected and vary with season and year. Variation in ion concentrations is also influenced by leaf position along the vine. This comprehensive, multi-year project demonstrates the importance of root system variation for shoot system morphology and suggests future exploration of rootstock genotypic diversity might offer a novel source of variation for shoot system phenotypic manipulation. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Allison Miller, Mani Awale, Anne Fennell, Zach Harris, Laszlo Kovacs, Misha Kwasniewski, Jason Londo, Zoe Migicovksy, Brigette Williams

Saint Louis University and the Danforth Plant Science Center; University of Missouri; South Dakota State University; Taylor Geospatial Institute; Missouri State University; Penn State University

Keywords

grafting, phenotyping, transcriptomics, epigenomics, ionomics 

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

La Région Délimitée du Douro et le Vin de Porto — un terroir historique —

The viticulture of the Douro Delimited Region, one of the heirs of ancestral viticulture, traditionally empirical and of quality, while integrating modernity and contemporary tools, respects and has always present the principles on which it was developed.

«Aztec» – the new white table grape resistant variety

This paper presents is the create, the study and amplographic
description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at
the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric