terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Abstract

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).  This set of four combinations is replicated 72 times in a randomized block experimental design with an irrigation treatment. Over the course of three years we quantified leaf elemental concentration, leaf transcriptome, leaf metabolome and epigenome, among others. Analyses in the ‘Chambourcin’ vineyard reveal extensive and dynamic phenotypic variation in ‘Chambourcin’ that reflects complex interactions among rootstock genotype, irrigation, season, and year. Specific effects of rootstock genotype on gene expression and elemental concentration were detected and vary with season and year. Variation in ion concentrations is also influenced by leaf position along the vine. This comprehensive, multi-year project demonstrates the importance of root system variation for shoot system morphology and suggests future exploration of rootstock genotypic diversity might offer a novel source of variation for shoot system phenotypic manipulation. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Allison Miller, Mani Awale, Anne Fennell, Zach Harris, Laszlo Kovacs, Misha Kwasniewski, Jason Londo, Zoe Migicovksy, Brigette Williams

Saint Louis University and the Danforth Plant Science Center; University of Missouri; South Dakota State University; Taylor Geospatial Institute; Missouri State University; Penn State University

Keywords

grafting, phenotyping, transcriptomics, epigenomics, ionomics 

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Sugar loading and phenolic accumulation as affected by ripeness level of Syrah/R99 grapes

Le chargement et l’accumulation des sucres ainsi que la biosynthèse des phénols ont été étudiés sur la Syrah, dans le cadre d’un programme de recherche de paramètres qui permettraient de déterminer une ou plusieurs qualités de raisin en relation avec des styles de vins pour un terroir donné. La relation entre la dynamique d’accumulation des

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.