terclim by ICS banner
IVES 9 IVES Conference Series 9 Hyperspectral imaging and machine learning for monitoring grapevine physiology

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Abstract

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements. Hyperspectral remote sensing uses the optical properties of the entire vine to predict photosynthetic capacity at the canopy level. In this study, estimates of Vcmax and Jmax were assessed, in six different rootstocks with a common scion, using direct measurements and canopy reflectance obtained with hyperspectral wavelengths (400 to 1000 nm). Using artificial intelligence-based modeling, prediction models were developed for Marquette on the six different rootstock genotypes. Results for direct and indirect measures indicate that each rootstock promotes differences in scion Vcmax and Jmaxprofiles across the season. Application of machine learning and neural networks of spectral data provided good predictions of both photosynthetic parameters. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Anne Fennell1*

1 South Dakota State University, Brookings SD, USA

Contact the author*

Keywords

Hyperspectral, photosynthesis, neural networks, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Late leaf removal does not consistently delay ripeningin semillon in Australia

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Estimating grapevine water status: a combined analysis of hyperspectral image and 3d point clouds

Mild to moderate and timely water deficit is desirable in grape production to optimize fruit quality for winemaking. It is crucial to develop robust and rapid approaches to assess grapevine water stress for scheduling deficit irrigation. Hyperspectral imaging (HSI) has the potential to detect changes in leaf water status, but the robustness and accuracy are restricted in field applications.

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.

Le cuivre sur raisins et moûts: dosage et intérêts de la mesure

Avec l’accroissement des surfaces viticoles conduites en Bio, la question de l’impact de la présence de résidus de cuivre (seul anti fongique autorisé dans l’UE dans ce cadre Règlementaire) sur le déroulement des fermentations et sur les qualités œnologiques et organoleptiques des vins s’est révélée de plus en plus cruciale.

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines.