terclim by ICS banner
IVES 9 IVES Conference Series 9 Hyperspectral imaging and machine learning for monitoring grapevine physiology

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Abstract

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements. Hyperspectral remote sensing uses the optical properties of the entire vine to predict photosynthetic capacity at the canopy level. In this study, estimates of Vcmax and Jmax were assessed, in six different rootstocks with a common scion, using direct measurements and canopy reflectance obtained with hyperspectral wavelengths (400 to 1000 nm). Using artificial intelligence-based modeling, prediction models were developed for Marquette on the six different rootstock genotypes. Results for direct and indirect measures indicate that each rootstock promotes differences in scion Vcmax and Jmaxprofiles across the season. Application of machine learning and neural networks of spectral data provided good predictions of both photosynthetic parameters. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Anne Fennell1*

1 South Dakota State University, Brookings SD, USA

Contact the author*

Keywords

Hyperspectral, photosynthesis, neural networks, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.