terclim by ICS banner
IVES 9 IVES Conference Series 9 Hyperspectral imaging and machine learning for monitoring grapevine physiology

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Abstract

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements. Hyperspectral remote sensing uses the optical properties of the entire vine to predict photosynthetic capacity at the canopy level. In this study, estimates of Vcmax and Jmax were assessed, in six different rootstocks with a common scion, using direct measurements and canopy reflectance obtained with hyperspectral wavelengths (400 to 1000 nm). Using artificial intelligence-based modeling, prediction models were developed for Marquette on the six different rootstock genotypes. Results for direct and indirect measures indicate that each rootstock promotes differences in scion Vcmax and Jmaxprofiles across the season. Application of machine learning and neural networks of spectral data provided good predictions of both photosynthetic parameters. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Anne Fennell1*

1 South Dakota State University, Brookings SD, USA

Contact the author*

Keywords

Hyperspectral, photosynthesis, neural networks, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Cartographie des terroirs viticoles: valorisation des résultats par un logiciel de consultation dynamique de cartes

Pour son travail de cartographie et de caractérisation des terroirs, la Cellule Terroirs Viticoles utilise la méthode développée par l’Unité Vigne et Vin du Centre INRA d’Angers. Cette méthode reconnue au niveau international est appliquée dans les vignobles du Val de Loire à l’échelle du 1/10 000e et est valorisée par des éditions d’Atlas Viticoles à destination des viticulteurs et des organismes techniques.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

Vitivoltaics: overview of the impacts on grapevine performance, wine quality, design features and stakeholder perceptions

This multidisciplinary study investigates “”Vitivoltaics,”” where photovoltaic (PV) panels are integrated into vineyard systems to generate renewable energy while providing partial shade to grapevines.

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.