terclim by ICS banner
IVES 9 IVES Conference Series 9 Hyperspectral imaging and machine learning for monitoring grapevine physiology

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Abstract

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements. Hyperspectral remote sensing uses the optical properties of the entire vine to predict photosynthetic capacity at the canopy level. In this study, estimates of Vcmax and Jmax were assessed, in six different rootstocks with a common scion, using direct measurements and canopy reflectance obtained with hyperspectral wavelengths (400 to 1000 nm). Using artificial intelligence-based modeling, prediction models were developed for Marquette on the six different rootstock genotypes. Results for direct and indirect measures indicate that each rootstock promotes differences in scion Vcmax and Jmaxprofiles across the season. Application of machine learning and neural networks of spectral data provided good predictions of both photosynthetic parameters. 

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Anne Fennell1*

1 South Dakota State University, Brookings SD, USA

Contact the author*

Keywords

Hyperspectral, photosynthesis, neural networks, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.

Varietal volatile patterns of Italian white wines

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified.

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.