terclim by ICS banner
IVES 9 IVES Conference Series 9 Withering of the ‘Moscato giallo’ grapes under covered space

Withering of the ‘Moscato giallo’ grapes under covered space

Abstract

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids. The total sugar content was determined refractometrically, the acid content was determined by neutralization with 0.1M NaOH and bromo-thymol as an indicator of pH change, the analysis of organic acids was carried out on an HPLC device. The research proved that in both treatment weight of the grapes and concentration of tartaric acid decreased during withering, while the concentration of sugar, malic acid, citric acid, and the content of total acids increased. Process of withering was shorter in sun drying treatment. Also, final concentration of sugar was higher in sun drying treatment. Final concentration of total acids, tartaric and malic acid was higher by drying in shade.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Domagoj Stupić1*, Laura Banović1, Iva Šikuten1, Petra Štambuk1, Ivana Tomaz1, Darko Preiner1, Zvjezdana Marković1, Željko Andabaka1, Edi Maletić1, Jasminka Karoglan Kontić1

1 University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb, Croatia

Contact the author*

Keywords

withering, Moscato giallo, sun drying, shade drying, organic acids

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.