terclim by ICS banner
IVES 9 IVES Conference Series 9 Withering of the ‘Moscato giallo’ grapes under covered space

Withering of the ‘Moscato giallo’ grapes under covered space

Abstract

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids. The total sugar content was determined refractometrically, the acid content was determined by neutralization with 0.1M NaOH and bromo-thymol as an indicator of pH change, the analysis of organic acids was carried out on an HPLC device. The research proved that in both treatment weight of the grapes and concentration of tartaric acid decreased during withering, while the concentration of sugar, malic acid, citric acid, and the content of total acids increased. Process of withering was shorter in sun drying treatment. Also, final concentration of sugar was higher in sun drying treatment. Final concentration of total acids, tartaric and malic acid was higher by drying in shade.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Domagoj Stupić1*, Laura Banović1, Iva Šikuten1, Petra Štambuk1, Ivana Tomaz1, Darko Preiner1, Zvjezdana Marković1, Željko Andabaka1, Edi Maletić1, Jasminka Karoglan Kontić1

1 University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb, Croatia

Contact the author*

Keywords

withering, Moscato giallo, sun drying, shade drying, organic acids

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

SAVOIR: A project promoting innovative and effective prophylactic methods in viticulture, as part of the governmental plan to anticipate the withdrawal of plant protection products in France (PARSADA)

Faced with the likely withdrawal of commercial specialities from use in the short to medium term, France has decided to implement an ambitious action plan to anticipate and avoid withdrawal without alternative solutions. The French wine industry (cniv and ifv) has been heavily involved in this action to define priorities. faced with the risk of the withdrawal of multi-site fungicides (folpel, dithianon, copper) coupled with the probable reduction in single-site fungicide solutions, mildew and black rot have been identified as the priority uses.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).