terclim by ICS banner
IVES 9 IVES Conference Series 9 A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Abstract

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Therefore, there is a compelling need to develop an automatic pest detection system, leveraging the recent progress in computer vision and deep learning techniques. However, the current progress in developing such a system is hindered by the lack of effective datasets to serve as ground-truth data for the training process.

To fill this gap, our study contributes a fully annotated dataset of S. titanus and Or. ishidae from yellow sticky traps. The dataset comprises more than 400 images, with 1000 identification per class. Guided by entomologists, the annotation task involved defining bounding boxes around relevant insects with corresponding class labels.

We trained and compared the performance of state-of-the-art object detection algorithms (YOLOv8 and Faster R-CNN). Pre-processing included automatic cropping to eliminate irrelevant background information and image enhancements to improve overall quality. Additionally, we tested the impact of altering image resolution, data augmentation, and single-class detection. Preliminary results achieved a high detection accuracy, with mAP@50 and F1-score above 90%, and mAP@50-95 around 70%, allowing a first deployment as an automatic annotation support tool.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giorgio Checola1*, Paolo Sonego1, Valerio Mazzoni2, Franca Ghidoni3, Alberto Gelmetti3, Pietro Franceschi1

1 Research and Innovation Centre, Digital Agriculture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
2 Research and Innovation Centre, Plant Protection Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
3 Technology Transfer Centre, Viticulture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy

Contact the author*

Keywords

insect detection, deep learning, smart pest monitoring, flavescence dorée, insect traps

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte