terclim by ICS banner
IVES 9 IVES Conference Series 9 A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Abstract

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Therefore, there is a compelling need to develop an automatic pest detection system, leveraging the recent progress in computer vision and deep learning techniques. However, the current progress in developing such a system is hindered by the lack of effective datasets to serve as ground-truth data for the training process.

To fill this gap, our study contributes a fully annotated dataset of S. titanus and Or. ishidae from yellow sticky traps. The dataset comprises more than 400 images, with 1000 identification per class. Guided by entomologists, the annotation task involved defining bounding boxes around relevant insects with corresponding class labels.

We trained and compared the performance of state-of-the-art object detection algorithms (YOLOv8 and Faster R-CNN). Pre-processing included automatic cropping to eliminate irrelevant background information and image enhancements to improve overall quality. Additionally, we tested the impact of altering image resolution, data augmentation, and single-class detection. Preliminary results achieved a high detection accuracy, with mAP@50 and F1-score above 90%, and mAP@50-95 around 70%, allowing a first deployment as an automatic annotation support tool.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giorgio Checola1*, Paolo Sonego1, Valerio Mazzoni2, Franca Ghidoni3, Alberto Gelmetti3, Pietro Franceschi1

1 Research and Innovation Centre, Digital Agriculture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
2 Research and Innovation Centre, Plant Protection Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
3 Technology Transfer Centre, Viticulture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy

Contact the author*

Keywords

insect detection, deep learning, smart pest monitoring, flavescence dorée, insect traps

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.