terclim by ICS banner
IVES 9 IVES Conference Series 9 A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Abstract

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Therefore, there is a compelling need to develop an automatic pest detection system, leveraging the recent progress in computer vision and deep learning techniques. However, the current progress in developing such a system is hindered by the lack of effective datasets to serve as ground-truth data for the training process.

To fill this gap, our study contributes a fully annotated dataset of S. titanus and Or. ishidae from yellow sticky traps. The dataset comprises more than 400 images, with 1000 identification per class. Guided by entomologists, the annotation task involved defining bounding boxes around relevant insects with corresponding class labels.

We trained and compared the performance of state-of-the-art object detection algorithms (YOLOv8 and Faster R-CNN). Pre-processing included automatic cropping to eliminate irrelevant background information and image enhancements to improve overall quality. Additionally, we tested the impact of altering image resolution, data augmentation, and single-class detection. Preliminary results achieved a high detection accuracy, with mAP@50 and F1-score above 90%, and mAP@50-95 around 70%, allowing a first deployment as an automatic annotation support tool.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giorgio Checola1*, Paolo Sonego1, Valerio Mazzoni2, Franca Ghidoni3, Alberto Gelmetti3, Pietro Franceschi1

1 Research and Innovation Centre, Digital Agriculture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
2 Research and Innovation Centre, Plant Protection Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy
3 Technology Transfer Centre, Viticulture Unit, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy

Contact the author*

Keywords

insect detection, deep learning, smart pest monitoring, flavescence dorée, insect traps

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Green berries on Gewürztraminer (Vitis vinifera L.) in South Tyrol (Italy)

The grape variety Gewürztraminer is known to be affected by two physiological disorders namely berry shrivel and bunch stem necrosis. During the season 2014 we noticed a new symptomatology type of ripening disorder on the variety. The new symptom showed not all berries fallowing the normal maturation stages, but single berries remaining at a soft but green stage till harvest. The broad distribution of these so called “green berries” symptoms in different production sites of our region, caused huge damage due to the difficulty of eliminating single berries per bunch before harvesting. Therefore, the Research Centre Laimburg began to investigate the reasons and origins of this new symptom. This work shows the results of first attempts to find causes for the symptom as well as the resulting approach to mitigate symptoms. Applications of magnesium leaf fertilizer showed first promising results against this putative disorder. To study the causal effect of the green berries 30 symptomatic vineyards in 2014 have been selected for a monitoring during the season 2016. To evaluate the foliar nutrient treatment two vineyards have been selected for application of magnesium sulfate and magnesium chloride. Leaf and berry nutrient analysis, as well as the main quality parameters during ripening have been performed. As soon as “green berries” symptoms appeared, incidence and severity have been evaluated. Most of the symptomatic vineyards of the 2016 monitoring showed light to clear magnesium deficit symptoms on their foliage. Only during the seasons 2020 and 2021 “green berries” symptoms could be found in the leaf fertilizer treatment vineyards. Both seasons showed a significant effect of the magnesium treatments to reduce the incidence and severity of the symptom. It seems that the appearance of the “green berries” symptom on Gewürztraminer is correlated to a disturbed uptake of magnesium of the vines.

Impact of dried stems in winemaking on Veneto Passito wines

The use of stems during fermentation is generally avoided due to the herbaceous off-odors they can impart to the wine. [1].

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).