terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of ozone application for low-input postharvest dehydration of wine grapes 

Effect of ozone application for low-input postharvest dehydration of wine grapes 

Abstract

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice. Harvested grapes of Corvina and Sangiovese cultivars were treated with ozone (gas or ozonated water) and partially dehydrated in a dedicated room equipped with a system for the control of internal temperature and humidity. Weak differences regarding the dehydration kinetics and the main technological parameter dynamics were detected between treated and untreated grapes. Analyses of phenolic and other non-volatile metabolites, as well as of the expression of key genes governing the grape berry postharvest metabolism are underway. Overall, the results will shed light on grape physiological response to ozone during the postharvest dehydration process. Sanitizing grapes using ozone will highly increase the capacity of grapes to withstand conditions of higher temperature and humidity reducing spoilage and production losses.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ron Shmuleviz1, Luca Cattaneo1, Pietro Emilio Nepi2, Eleonora Littarru2, Stefano Brizzolara2, Pietro Tonutti2, Marianna Fasoli1, Giovanni Battista Tornielli1,3*

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy  
3 Current address: Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD) Italy

Contact the author*

Keywords

Vitis vinifera, postharvest dehydration, ozone, grape berry, metabolism

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Il mal dell’esca é una malattia della vite della quale sono state studiate sintomatologia, eziologia, patogenesi ed epidemiologia. Essendo una malattia che colpisce soprattutto la parte epigea delle piante, le caratteristiche dei suoli non sono mai state considerate fra le responsabili della sua insorgenza e diffusione.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…