terclim by ICS banner
IVES 9 IVES Conference Series 9 Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Abstract

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR. In addition, the same physical berry traits, i.e. berry impedance and berry texture, are correlated with the sensitivity of grape berries towards induced heat stress (HS). Hereby, variety-specific reaction to the controlled HS treatment is probably an indicator for grape sunburn tolerance. Within the cooperative project “WiVitis” the stated physical-mechanical traits will be phenotyped by sensors, microscopic and analytical methods to characterize new and established grapevine varieties as well as recent breeding material from different breeding programs in the Upper Rhine region (Germany, France and Switzerland). This spatial and temporal high-resolution dataset of berry skin traits will be used to verify transferability of BBR and sunburn prediction to unknown genotypes and environments followed by the screening of mapping populations for QTL analysis in order to develop reliable molecular markers for BBR and grape sunburn.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Katja Herzog*, Annika Ziehl, Florian Schwander, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

Sensor-based phenotyping, biotic stress resilience, QTL analysis, genetic repository, disease prediction

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.