terclim by ICS banner
IVES 9 IVES Conference Series 9 Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Abstract

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR. In addition, the same physical berry traits, i.e. berry impedance and berry texture, are correlated with the sensitivity of grape berries towards induced heat stress (HS). Hereby, variety-specific reaction to the controlled HS treatment is probably an indicator for grape sunburn tolerance. Within the cooperative project “WiVitis” the stated physical-mechanical traits will be phenotyped by sensors, microscopic and analytical methods to characterize new and established grapevine varieties as well as recent breeding material from different breeding programs in the Upper Rhine region (Germany, France and Switzerland). This spatial and temporal high-resolution dataset of berry skin traits will be used to verify transferability of BBR and sunburn prediction to unknown genotypes and environments followed by the screening of mapping populations for QTL analysis in order to develop reliable molecular markers for BBR and grape sunburn.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Katja Herzog*, Annika Ziehl, Florian Schwander, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

Sensor-based phenotyping, biotic stress resilience, QTL analysis, genetic repository, disease prediction

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.