terclim by ICS banner
IVES 9 IVES Conference Series 9 Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

Abstract

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR. In addition, the same physical berry traits, i.e. berry impedance and berry texture, are correlated with the sensitivity of grape berries towards induced heat stress (HS). Hereby, variety-specific reaction to the controlled HS treatment is probably an indicator for grape sunburn tolerance. Within the cooperative project “WiVitis” the stated physical-mechanical traits will be phenotyped by sensors, microscopic and analytical methods to characterize new and established grapevine varieties as well as recent breeding material from different breeding programs in the Upper Rhine region (Germany, France and Switzerland). This spatial and temporal high-resolution dataset of berry skin traits will be used to verify transferability of BBR and sunburn prediction to unknown genotypes and environments followed by the screening of mapping populations for QTL analysis in order to develop reliable molecular markers for BBR and grape sunburn.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Katja Herzog*, Annika Ziehl, Florian Schwander, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

Sensor-based phenotyping, biotic stress resilience, QTL analysis, genetic repository, disease prediction

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Tokaj zonation, traditions and future prospects

La superficie actuelle de l’ensemble des vignobles est de 5.293 ha qui est repartie dans 27 communes (données officielles du Conseil National des Communes de montagnes).

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*.

Identification of the agronomical and landscape potentialities in Côtes du Rhône area (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.