terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Abstract

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool. Data exploration and prediction of phenolic concentration in grape berries were conducted through Principal Component Analysis (PCA) and Modified Partial Least Squares (MPLS) regression. The best calibration and cross-validation models were built for total monomeric anthocyanins, nonacylated anthocyanins and cyanidin 3-glucoside with determination coefficients (R2cv values above 0.86, while the standard errors of cross validation (SECV) were 0.058 mg/g, 0.052 mg/g and 0.001 mg/g respectively. Of the other phenolic groups, the model for total flavanol yielded R2cv = 0.66 and SECV = 0.023 mg/g. This technology shows high potential for the selection and classification of berries throughout ripening in the vineyard or upon grape reception at the winery. Its application could help tailoring the oenological fate of grape berries to various wine qualities or styles.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Fernández-Novales1,2, Ignacio Barrio1,2, Leticia Martínez-Lapuente1,2, Zenaida Guadalupe1,2; María Paz Diago,1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Berry ripening, Non-invasive technologies, Anthocyanin, Phenols, Chemometrics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.