terclim by ICS banner
IVES 9 IVES Conference Series 9 High throughput winter pruning weight estimation based on wood volume evaluation 

High throughput winter pruning weight estimation based on wood volume evaluation 

Abstract

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.

A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.

The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.

In 2021 and 2022, 10 different rows of 70 plants were phenotyped by photographing each plant with a resolution of 4 pixels/mm² and by the classical method, i.e. the weight of the winter pruning wood.

The results are that the winter pruning weight can be estimated at the fine scale of five vines with R²=0.68 in 2021 and 0.74 in 2022. Incrementing the wood density of the scion into our calculation improves the regression with R² reaching 0.81 in 2022. Our approach, in which the estimation is done on the entire visible shoots, showed better results than the only known approach used in commercial devices, which simply uses the linear intercepts of a laser beam along the vine row.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marine Morel1*, Aymeric Deshayes2, Barna Keresztes2, Jean-Pierre Da Costa2,3, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2 Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
3 Bordeaux Sciences Agro, F-33175 Gradignan, France

Contact the author*

Keywords

vigour confered, field phenotyping, proximal sensing, precision viticulture, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.