terclim by ICS banner
IVES 9 IVES Conference Series 9 High throughput winter pruning weight estimation based on wood volume evaluation 

High throughput winter pruning weight estimation based on wood volume evaluation 

Abstract

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.

A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.

The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.

In 2021 and 2022, 10 different rows of 70 plants were phenotyped by photographing each plant with a resolution of 4 pixels/mm² and by the classical method, i.e. the weight of the winter pruning wood.

The results are that the winter pruning weight can be estimated at the fine scale of five vines with R²=0.68 in 2021 and 0.74 in 2022. Incrementing the wood density of the scion into our calculation improves the regression with R² reaching 0.81 in 2022. Our approach, in which the estimation is done on the entire visible shoots, showed better results than the only known approach used in commercial devices, which simply uses the linear intercepts of a laser beam along the vine row.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marine Morel1*, Aymeric Deshayes2, Barna Keresztes2, Jean-Pierre Da Costa2,3, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2 Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
3 Bordeaux Sciences Agro, F-33175 Gradignan, France

Contact the author*

Keywords

vigour confered, field phenotyping, proximal sensing, precision viticulture, grapevine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

Approche méthodologique concernant une caractérisation sensorielle de vins rouges de l’Anjou

Face à une concurrence de plus en plus rude entre pays producteurs, le vignoble de l’Anjou, déjà riche par sa diversité, souhaite renforcer sa logique de vins d’ A.O.C., notamment au travers de ses vins rouges.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.