terclim by ICS banner
IVES 9 IVES Conference Series 9 Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Abstract

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available. A promising avenue is to link carbohydrate arrays targeting cell wall polymers with more traditional biochemical methods with rapid infrared spectroscopy tools to ‘chemotype’ the cell walls of cultivars at specific stages of development (ripeness). We have integrated immunochemical datasets from over 15 different cultivars, such as ‘Crimson Seedless’ and ‘Prime’ which are well-known: with less well characterised cultivars such as ‘Autumn Crisp’ and ‘Sugar Crisp’ offering a means to ‘snapshot’ or ‘fingerprint’ the cell wall chemotype using spectroscopic methods. The ultimate aim would be to both provide new knowledge on berry cell walls of important cultivars as well as progressing the potential development of infrared sensing technology for predicting table grape cell wall quality (predicting if grapes will progress to soft or firm berries). The datasets and predictive models produced from this survey will be correlated with firmness and textural analysis performed on grape berries from different varieties and stages of ripeness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

John P. Moore1*, Miguel Henriques1, Eugene Badenhorst1, Bodil JØrgensen2, Talitha Venter1

1 South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, South Africa
2 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

Contact the author*

Keywords

Cell walls, ripeness, berry firmness, spectroscopy, cultivars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine