terclim by ICS banner
IVES 9 IVES Conference Series 9 Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Abstract

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available. A promising avenue is to link carbohydrate arrays targeting cell wall polymers with more traditional biochemical methods with rapid infrared spectroscopy tools to ‘chemotype’ the cell walls of cultivars at specific stages of development (ripeness). We have integrated immunochemical datasets from over 15 different cultivars, such as ‘Crimson Seedless’ and ‘Prime’ which are well-known: with less well characterised cultivars such as ‘Autumn Crisp’ and ‘Sugar Crisp’ offering a means to ‘snapshot’ or ‘fingerprint’ the cell wall chemotype using spectroscopic methods. The ultimate aim would be to both provide new knowledge on berry cell walls of important cultivars as well as progressing the potential development of infrared sensing technology for predicting table grape cell wall quality (predicting if grapes will progress to soft or firm berries). The datasets and predictive models produced from this survey will be correlated with firmness and textural analysis performed on grape berries from different varieties and stages of ripeness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

John P. Moore1*, Miguel Henriques1, Eugene Badenhorst1, Bodil JØrgensen2, Talitha Venter1

1 South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, South Africa
2 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

Contact the author*

Keywords

Cell walls, ripeness, berry firmness, spectroscopy, cultivars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].