terclim by ICS banner
IVES 9 IVES Conference Series 9 Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Abstract

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available. A promising avenue is to link carbohydrate arrays targeting cell wall polymers with more traditional biochemical methods with rapid infrared spectroscopy tools to ‘chemotype’ the cell walls of cultivars at specific stages of development (ripeness). We have integrated immunochemical datasets from over 15 different cultivars, such as ‘Crimson Seedless’ and ‘Prime’ which are well-known: with less well characterised cultivars such as ‘Autumn Crisp’ and ‘Sugar Crisp’ offering a means to ‘snapshot’ or ‘fingerprint’ the cell wall chemotype using spectroscopic methods. The ultimate aim would be to both provide new knowledge on berry cell walls of important cultivars as well as progressing the potential development of infrared sensing technology for predicting table grape cell wall quality (predicting if grapes will progress to soft or firm berries). The datasets and predictive models produced from this survey will be correlated with firmness and textural analysis performed on grape berries from different varieties and stages of ripeness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

John P. Moore1*, Miguel Henriques1, Eugene Badenhorst1, Bodil JØrgensen2, Talitha Venter1

1 South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, South Africa
2 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

Contact the author*

Keywords

Cell walls, ripeness, berry firmness, spectroscopy, cultivars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

A climatic classification of the world’s wine regions and winegrape variety concentration

In this video recording of the IVES science meeting 2024, German Puga (Wine Economics Research Centre, School of Economics and Public Policy, University of Adelaide, Adelaide, Australia) speaks about a climatic classification of the world’s wine regions and winegrape variety concentration. This presentation is based on an original article accessible for free on OENO One.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.