terclim by ICS banner
IVES 9 IVES Conference Series 9 Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

Abstract

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available. A promising avenue is to link carbohydrate arrays targeting cell wall polymers with more traditional biochemical methods with rapid infrared spectroscopy tools to ‘chemotype’ the cell walls of cultivars at specific stages of development (ripeness). We have integrated immunochemical datasets from over 15 different cultivars, such as ‘Crimson Seedless’ and ‘Prime’ which are well-known: with less well characterised cultivars such as ‘Autumn Crisp’ and ‘Sugar Crisp’ offering a means to ‘snapshot’ or ‘fingerprint’ the cell wall chemotype using spectroscopic methods. The ultimate aim would be to both provide new knowledge on berry cell walls of important cultivars as well as progressing the potential development of infrared sensing technology for predicting table grape cell wall quality (predicting if grapes will progress to soft or firm berries). The datasets and predictive models produced from this survey will be correlated with firmness and textural analysis performed on grape berries from different varieties and stages of ripeness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

John P. Moore1*, Miguel Henriques1, Eugene Badenhorst1, Bodil JØrgensen2, Talitha Venter1

1 South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, South Africa
2 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

Contact the author*

Keywords

Cell walls, ripeness, berry firmness, spectroscopy, cultivars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].