terclim by ICS banner
IVES 9 IVES Conference Series 9 Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Abstract

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs. The main objective of this work is to compare new hybrids of table grape (Alicante Bouschet cv. × Itumfifteen cv.) regards to their pulp phenolic compounds content. Three selections of new hybrids Non-Coloured Flesh (NCF) and Total Coloured Flesh (TCF) were analyzed for their individual phenolic compounds (phenolic acids, stilbenes, flavonols, and anthocyanins) during two consecutive seasons 2022 and 2023. The new TCF hybrids showed 2.9-fold higher flavonols in the berry pulp compared to NCF hybrids. Moreover, the anthocyanins content in the berry pulp of TCF grapes reported to be 20-fold higher than those of NCF hybrids. As expected, phenolic acids and stilbenes, were significantly enhanced in TCF hybrids compared to NCF hybrids. The presence of red berry flesh in table grapes not only adds a new characteristic to the market, this new cultivars are genetically enriched in healthy promoting compounds.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pablo Crespo Ródenas1,2*, Lorena Martínez Zamora2,3, Francisco Artés Hernández2, Manuel Tornel Martínez1

1 Table Grape Breeding Group. Department of Biotechnology, Genomics and Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
2 Postharvest and Refrigeration Group. Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain
3 Department of Food Technology, Food Science, and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain

Contact the author*

Keywords

Vitis vinifera, teinturier grapes, polyphenols, malvidin, kaempferol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.)

The« Sigales’ method »

Le comportement de la vigne est étroitement lié aux propriétés hydriques des sols surtout dans leurs parties profondes.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.