terclim by ICS banner
IVES 9 IVES Conference Series 9 Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Abstract

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs. The main objective of this work is to compare new hybrids of table grape (Alicante Bouschet cv. × Itumfifteen cv.) regards to their pulp phenolic compounds content. Three selections of new hybrids Non-Coloured Flesh (NCF) and Total Coloured Flesh (TCF) were analyzed for their individual phenolic compounds (phenolic acids, stilbenes, flavonols, and anthocyanins) during two consecutive seasons 2022 and 2023. The new TCF hybrids showed 2.9-fold higher flavonols in the berry pulp compared to NCF hybrids. Moreover, the anthocyanins content in the berry pulp of TCF grapes reported to be 20-fold higher than those of NCF hybrids. As expected, phenolic acids and stilbenes, were significantly enhanced in TCF hybrids compared to NCF hybrids. The presence of red berry flesh in table grapes not only adds a new characteristic to the market, this new cultivars are genetically enriched in healthy promoting compounds.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pablo Crespo Ródenas1,2*, Lorena Martínez Zamora2,3, Francisco Artés Hernández2, Manuel Tornel Martínez1

1 Table Grape Breeding Group. Department of Biotechnology, Genomics and Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
2 Postharvest and Refrigeration Group. Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain
3 Department of Food Technology, Food Science, and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain

Contact the author*

Keywords

Vitis vinifera, teinturier grapes, polyphenols, malvidin, kaempferol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Caractérisation des relations hydriques sol/vigne dans un terroir languedocien

Par le fait d’une politique agricole communautaire axée sur des objectifs de qualité des produits, la recherche et l’identification des critères de cette qualité deviennent impératives. En viticulture, la notion de qualité du produit est rattachée au concept théorique de «terroir». Ce terme englobe un ensemble de paramètres du milieu (géologie, sol, climat) influant sur la récolte.