Terroir 2016 banner
IVES 9 IVES Conference Series 9 The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Abstract

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”. All around the world the geology and soils make up an important component of the terroir of the wine. In the Willamette Valley of Oregon in the United States, the terroir is strongly influenced by the bedrock geology and soils. The three dominant groups are the volcanic soils, the Jory Series, that are developed on the Columbia River Basalts and the Willakenzie Series of soils developed on uplifted marine sedimentary rocks in the foothills of the Oregon Coast Range. The third group is developed on Laurelwood Soils in weathered loess with pisolites in it on weathered Columbia River Basalt. The wines developed out of grapes from the three different soils are very different. They are so different that the Willamette Valley AVA has been subdivided into six new AVA’s based on the differences in terroir, primarily the soils and geology.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Scott Burns

Department of Geology, Portland State University, Portland, Oregon, 97205 USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis, Willamette Valley

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.