Terroir 2016 banner
IVES 9 IVES Conference Series 9 The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Abstract

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”. All around the world the geology and soils make up an important component of the terroir of the wine. In the Willamette Valley of Oregon in the United States, the terroir is strongly influenced by the bedrock geology and soils. The three dominant groups are the volcanic soils, the Jory Series, that are developed on the Columbia River Basalts and the Willakenzie Series of soils developed on uplifted marine sedimentary rocks in the foothills of the Oregon Coast Range. The third group is developed on Laurelwood Soils in weathered loess with pisolites in it on weathered Columbia River Basalt. The wines developed out of grapes from the three different soils are very different. They are so different that the Willamette Valley AVA has been subdivided into six new AVA’s based on the differences in terroir, primarily the soils and geology.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Scott Burns

Department of Geology, Portland State University, Portland, Oregon, 97205 USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis, Willamette Valley

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

Viticulture, landscapes and the marketing of our wine

The global wine market is polarising over brands versus origin. Provenance is emerging as a marketing megatrend in many fast moving consumer goods. Origin has always been important in wine but does that mean consumers understand, or care about terroir?

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.