Terroir 2016 banner
IVES 9 IVES Conference Series 9 The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Abstract

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”. All around the world the geology and soils make up an important component of the terroir of the wine. In the Willamette Valley of Oregon in the United States, the terroir is strongly influenced by the bedrock geology and soils. The three dominant groups are the volcanic soils, the Jory Series, that are developed on the Columbia River Basalts and the Willakenzie Series of soils developed on uplifted marine sedimentary rocks in the foothills of the Oregon Coast Range. The third group is developed on Laurelwood Soils in weathered loess with pisolites in it on weathered Columbia River Basalt. The wines developed out of grapes from the three different soils are very different. They are so different that the Willamette Valley AVA has been subdivided into six new AVA’s based on the differences in terroir, primarily the soils and geology.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Scott Burns

Department of Geology, Portland State University, Portland, Oregon, 97205 USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis, Willamette Valley

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Bio‐metaethics viticulture proposed by the Giesco. Direct charter with producers. Example of evaluation of training systems

The key points of the current GiESCO charter ‘BIO‐MetaEthics’ are exposed. The new development in cooperation with Giovanni Cargnello is to apply the principles and the content into the practice by establishing a direct contract with producers and other actors of the wine sector. An evaluation sheet is proposed and tested in a new advanced vineyard. For illustrating the methodology of evaluation, the example of the choice of the training systems is detailed on a wide range of situations. 

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Rootstocks and climate change: adding up means learning faster

In this video recording of the IVES science meeting 2025, Gonzaga Santesteban (Public University of Navarra, Pamplona, Spain) speaks about rootstocks, climate change and meta-analysis. This presentation is based on an original article accessible for free on OENO One.