Terroir 2016 banner
IVES 9 IVES Conference Series 9 The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Abstract

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”. All around the world the geology and soils make up an important component of the terroir of the wine. In the Willamette Valley of Oregon in the United States, the terroir is strongly influenced by the bedrock geology and soils. The three dominant groups are the volcanic soils, the Jory Series, that are developed on the Columbia River Basalts and the Willakenzie Series of soils developed on uplifted marine sedimentary rocks in the foothills of the Oregon Coast Range. The third group is developed on Laurelwood Soils in weathered loess with pisolites in it on weathered Columbia River Basalt. The wines developed out of grapes from the three different soils are very different. They are so different that the Willamette Valley AVA has been subdivided into six new AVA’s based on the differences in terroir, primarily the soils and geology.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Scott Burns

Department of Geology, Portland State University, Portland, Oregon, 97205 USA

Contact the author

Keywords

Pinot Noir, mineralogy, wine chemistry, soil chemistry, sensory analysis, Willamette Valley

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi.