terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Abstract

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon. The results showed a significant delay in grape maturation in the upper part of the vertical cordon, characterized by lower Brix levels and higher titratable acidity than the lower section. These outcomes can be partly explained by observed variations in the Winkler index measured inside the canopy, indicating a 15.59% reduction in the upper zone. However, the radiation percentage in the fruiting zone was significantly higher in the upper part of the vine. In summary, the change in trunk height significantly impacted grape ripening. The study underscores vineyard management’s importance in improving wine quality and preserving its typicity. These findings open avenues for future research, guiding potential adjustments in viticultural practices under evolving environmental conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Puelles1*, Pedro Balda2, Andreu Mairata1, David Labarga1, Álvaro Galán1, Fernando Martínez de Toda1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain
2Universidad de La Rioja, c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

climate change, temperature gradient, viticulture, training system, vertical cordon

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.