terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Abstract

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon. The results showed a significant delay in grape maturation in the upper part of the vertical cordon, characterized by lower Brix levels and higher titratable acidity than the lower section. These outcomes can be partly explained by observed variations in the Winkler index measured inside the canopy, indicating a 15.59% reduction in the upper zone. However, the radiation percentage in the fruiting zone was significantly higher in the upper part of the vine. In summary, the change in trunk height significantly impacted grape ripening. The study underscores vineyard management’s importance in improving wine quality and preserving its typicity. These findings open avenues for future research, guiding potential adjustments in viticultural practices under evolving environmental conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Puelles1*, Pedro Balda2, Andreu Mairata1, David Labarga1, Álvaro Galán1, Fernando Martínez de Toda1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain
2Universidad de La Rioja, c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

climate change, temperature gradient, viticulture, training system, vertical cordon

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines,

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.