terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Abstract

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon. The results showed a significant delay in grape maturation in the upper part of the vertical cordon, characterized by lower Brix levels and higher titratable acidity than the lower section. These outcomes can be partly explained by observed variations in the Winkler index measured inside the canopy, indicating a 15.59% reduction in the upper zone. However, the radiation percentage in the fruiting zone was significantly higher in the upper part of the vine. In summary, the change in trunk height significantly impacted grape ripening. The study underscores vineyard management’s importance in improving wine quality and preserving its typicity. These findings open avenues for future research, guiding potential adjustments in viticultural practices under evolving environmental conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Puelles1*, Pedro Balda2, Andreu Mairata1, David Labarga1, Álvaro Galán1, Fernando Martínez de Toda1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain
2Universidad de La Rioja, c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

climate change, temperature gradient, viticulture, training system, vertical cordon

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

The worldwide reputation of Sauvignon Blanc has led technicians to ask themselves various questions about the cultivation of this variety: choice of the most suitable localities, the most effective agronomic strategies and the most appropriate wine-growing techniques, to bring out its particular aroma.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

A geologic numeric mapping, with geophysic transects, of Marsannay’s vineyard (Burgundy, France)

Marsannay est l’appellation la plus septentrionale de la Côte de Nuits, à la limite Sud de Dijon. Elle regroupe trois villages, Chenôve, Marsannay-la-Côte et Couchey, et constitue l’appellation la plus vaste de la Côte de Nuits avec 315 hectares en A.O.C. Elle possède uniquement des niveaux d’appellations régionales et communales depuis 1987.

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.