OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

Abstract

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified. 

A synthetic grape juice medium fermented by the yeast strain was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa peptidic fractions obtained at saturation degrees of 0 %-20 %, 20 %-40 % and 40 %-60 %, inhibited only the growth of O. oeni in vivo but not its ability to consume L-malic acid. The 5–10 kDa peptidic fraction recovered at a saturation degree of 60 %–80 % was the only one that inhibited both the bacterial growth and the malate consumption. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7 in a cell-free enzymatic extract prepared from the same bacterial strain. Therefore, it was further purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro at the same pH range were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. 

The sequencing revealed nine peptides originating from eight proteins of S.cerevisiae that play diverse vital roles in yeast cells. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were considered to contribute the most to the MLF inhibition. However, it is likely that one or more of the nine peptides have worked synergistically to inhibit MLF. In vivo, they are supposed to enter the bacterial cytoplasm and inhibit the malolactic enzyme by mechanisms yet to be identified. 

These results suggest that the 5-10 kDa fraction recovered at a saturation degree of 60 %-80 % contained at least two categories of peptides; the ones responsible for the bacterial growth inhibition and those responsible for the malate consumption inhibition. Whereas the fractions recovered between 0 % and 60 % contained only peptides that inhibited the bacterial growth.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nancy Nehme, Ziad Rizk, Youssef El Rayess, Chantal Ghanem, Florence Mathieu, Patricia Taillandier , Nancy Nehme

Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn, Fanar- Lebanon 
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France 

Contact the author

Keywords

antibacterial yeast peptides, Wtm2p, Utr2p, GAPDH 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.