OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

Abstract

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified. 

A synthetic grape juice medium fermented by the yeast strain was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa peptidic fractions obtained at saturation degrees of 0 %-20 %, 20 %-40 % and 40 %-60 %, inhibited only the growth of O. oeni in vivo but not its ability to consume L-malic acid. The 5–10 kDa peptidic fraction recovered at a saturation degree of 60 %–80 % was the only one that inhibited both the bacterial growth and the malate consumption. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7 in a cell-free enzymatic extract prepared from the same bacterial strain. Therefore, it was further purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro at the same pH range were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. 

The sequencing revealed nine peptides originating from eight proteins of S.cerevisiae that play diverse vital roles in yeast cells. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were considered to contribute the most to the MLF inhibition. However, it is likely that one or more of the nine peptides have worked synergistically to inhibit MLF. In vivo, they are supposed to enter the bacterial cytoplasm and inhibit the malolactic enzyme by mechanisms yet to be identified. 

These results suggest that the 5-10 kDa fraction recovered at a saturation degree of 60 %-80 % contained at least two categories of peptides; the ones responsible for the bacterial growth inhibition and those responsible for the malate consumption inhibition. Whereas the fractions recovered between 0 % and 60 % contained only peptides that inhibited the bacterial growth.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nancy Nehme, Ziad Rizk, Youssef El Rayess, Chantal Ghanem, Florence Mathieu, Patricia Taillandier , Nancy Nehme

Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn, Fanar- Lebanon 
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France 

Contact the author

Keywords

antibacterial yeast peptides, Wtm2p, Utr2p, GAPDH 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios. We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Pesticide – Free viticulture: towards agroecological wine-producing socio-ecosystems

Can we cultivate grapevine without pesticides? This is a huge challenge for this emblematic crop, which is one of the largest users of plant protection products. Pesticides are mainly used to protect the vine against leaf diseases (powdery mildew, mildew, black-rot), even in organic farming, which uses copper in particular. What are the research avenues that can help eliminate pesticides today?