OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

Abstract

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified. 

A synthetic grape juice medium fermented by the yeast strain was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa peptidic fractions obtained at saturation degrees of 0 %-20 %, 20 %-40 % and 40 %-60 %, inhibited only the growth of O. oeni in vivo but not its ability to consume L-malic acid. The 5–10 kDa peptidic fraction recovered at a saturation degree of 60 %–80 % was the only one that inhibited both the bacterial growth and the malate consumption. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7 in a cell-free enzymatic extract prepared from the same bacterial strain. Therefore, it was further purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro at the same pH range were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. 

The sequencing revealed nine peptides originating from eight proteins of S.cerevisiae that play diverse vital roles in yeast cells. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were considered to contribute the most to the MLF inhibition. However, it is likely that one or more of the nine peptides have worked synergistically to inhibit MLF. In vivo, they are supposed to enter the bacterial cytoplasm and inhibit the malolactic enzyme by mechanisms yet to be identified. 

These results suggest that the 5-10 kDa fraction recovered at a saturation degree of 60 %-80 % contained at least two categories of peptides; the ones responsible for the bacterial growth inhibition and those responsible for the malate consumption inhibition. Whereas the fractions recovered between 0 % and 60 % contained only peptides that inhibited the bacterial growth.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Nancy Nehme, Ziad Rizk, Youssef El Rayess, Chantal Ghanem, Florence Mathieu, Patricia Taillandier , Nancy Nehme

Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn, Fanar- Lebanon 
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France 

Contact the author

Keywords

antibacterial yeast peptides, Wtm2p, Utr2p, GAPDH 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.