OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Abstract

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium. 

In food industry, LAB are commonly studied and used because they can metabolize a wide variety of chemical entities (e.g. acids, carbohydrates…) determining the final product quality and stability. In wine, different LAB species have been identified. Among them, Oenococcus oeni and Lactobacillus plantarum are the two most encountered species and can subsist in wine environments, particularly in barrels in the form of biofilm phenotype. They possibly modify transfers of chemical compounds of interest at the wood/wine interface or actively influence them according to the oenological practices adopted by the winemaker. To control and improve the use of this microbiological flora, it is essential to understand growth dynamics throughout time, particularly by persisting as a biofilm from one vintage to another. 

Up to now, it is still not clear about the ECS composition in wine systems and how they act. Combining different characterization measurements (e.g. mass yields, ATR-FTIR, SEC, LC-MS/MS…) will allow us to determine the role of these ECS during bacterial growth in function of physiological states (planktonic, biofilm) aiming to a better biotechnological control of these bacteria under novel enological practices. 

Physicochemical analyses of the ECS produced by the model Lactobacillus plantarum WCFS1 strain in planktonic and biofilm conditions enable to determine the optimum growing phase for proteinaceous material production by varying growing media (i.e. 3 physicochemical semi-defined media and white grape must). ECS chemical composition unveils the presence of glycosidic enzymes from the same families for the 3 different semi-defined media.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Peio Elichiry-Ortiz, Pauline Maes, Stéphanie Weidman, Christian Coelho, Dominique Champion

Institut Jules Guyot (IUVV), Université de Bourgogne, DIJON (France)  

Contact the author

Keywords

extracellular substances, lactic acid bacteria, chemical characterization, enological practices 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Valuation of the fields viti-vinicoles by the landscapes

La prise en compte des paysages viticoles dans le développement durable ou l’aménagement du territoire est un thème non négligeable pour la valorisation de la filière viti-vinicole à l’échelle d’une exploitation ou d’une A.O.C.

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).

Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle

Fractal analysis as a tool for delimiting guarantee of quality areas

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy.

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.