OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Abstract

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium. 

In food industry, LAB are commonly studied and used because they can metabolize a wide variety of chemical entities (e.g. acids, carbohydrates…) determining the final product quality and stability. In wine, different LAB species have been identified. Among them, Oenococcus oeni and Lactobacillus plantarum are the two most encountered species and can subsist in wine environments, particularly in barrels in the form of biofilm phenotype. They possibly modify transfers of chemical compounds of interest at the wood/wine interface or actively influence them according to the oenological practices adopted by the winemaker. To control and improve the use of this microbiological flora, it is essential to understand growth dynamics throughout time, particularly by persisting as a biofilm from one vintage to another. 

Up to now, it is still not clear about the ECS composition in wine systems and how they act. Combining different characterization measurements (e.g. mass yields, ATR-FTIR, SEC, LC-MS/MS…) will allow us to determine the role of these ECS during bacterial growth in function of physiological states (planktonic, biofilm) aiming to a better biotechnological control of these bacteria under novel enological practices. 

Physicochemical analyses of the ECS produced by the model Lactobacillus plantarum WCFS1 strain in planktonic and biofilm conditions enable to determine the optimum growing phase for proteinaceous material production by varying growing media (i.e. 3 physicochemical semi-defined media and white grape must). ECS chemical composition unveils the presence of glycosidic enzymes from the same families for the 3 different semi-defined media.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Peio Elichiry-Ortiz, Pauline Maes, Stéphanie Weidman, Christian Coelho, Dominique Champion

Institut Jules Guyot (IUVV), Université de Bourgogne, DIJON (France)  

Contact the author

Keywords

extracellular substances, lactic acid bacteria, chemical characterization, enological practices 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Exploring diversity of grapevine responses to Flavescence dorée infection

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?