OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Abstract

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium. 

In food industry, LAB are commonly studied and used because they can metabolize a wide variety of chemical entities (e.g. acids, carbohydrates…) determining the final product quality and stability. In wine, different LAB species have been identified. Among them, Oenococcus oeni and Lactobacillus plantarum are the two most encountered species and can subsist in wine environments, particularly in barrels in the form of biofilm phenotype. They possibly modify transfers of chemical compounds of interest at the wood/wine interface or actively influence them according to the oenological practices adopted by the winemaker. To control and improve the use of this microbiological flora, it is essential to understand growth dynamics throughout time, particularly by persisting as a biofilm from one vintage to another. 

Up to now, it is still not clear about the ECS composition in wine systems and how they act. Combining different characterization measurements (e.g. mass yields, ATR-FTIR, SEC, LC-MS/MS…) will allow us to determine the role of these ECS during bacterial growth in function of physiological states (planktonic, biofilm) aiming to a better biotechnological control of these bacteria under novel enological practices. 

Physicochemical analyses of the ECS produced by the model Lactobacillus plantarum WCFS1 strain in planktonic and biofilm conditions enable to determine the optimum growing phase for proteinaceous material production by varying growing media (i.e. 3 physicochemical semi-defined media and white grape must). ECS chemical composition unveils the presence of glycosidic enzymes from the same families for the 3 different semi-defined media.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Peio Elichiry-Ortiz, Pauline Maes, Stéphanie Weidman, Christian Coelho, Dominique Champion

Institut Jules Guyot (IUVV), Université de Bourgogne, DIJON (France)  

Contact the author

Keywords

extracellular substances, lactic acid bacteria, chemical characterization, enological practices 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time.