OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Abstract

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium. 

In food industry, LAB are commonly studied and used because they can metabolize a wide variety of chemical entities (e.g. acids, carbohydrates…) determining the final product quality and stability. In wine, different LAB species have been identified. Among them, Oenococcus oeni and Lactobacillus plantarum are the two most encountered species and can subsist in wine environments, particularly in barrels in the form of biofilm phenotype. They possibly modify transfers of chemical compounds of interest at the wood/wine interface or actively influence them according to the oenological practices adopted by the winemaker. To control and improve the use of this microbiological flora, it is essential to understand growth dynamics throughout time, particularly by persisting as a biofilm from one vintage to another. 

Up to now, it is still not clear about the ECS composition in wine systems and how they act. Combining different characterization measurements (e.g. mass yields, ATR-FTIR, SEC, LC-MS/MS…) will allow us to determine the role of these ECS during bacterial growth in function of physiological states (planktonic, biofilm) aiming to a better biotechnological control of these bacteria under novel enological practices. 

Physicochemical analyses of the ECS produced by the model Lactobacillus plantarum WCFS1 strain in planktonic and biofilm conditions enable to determine the optimum growing phase for proteinaceous material production by varying growing media (i.e. 3 physicochemical semi-defined media and white grape must). ECS chemical composition unveils the presence of glycosidic enzymes from the same families for the 3 different semi-defined media.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Peio Elichiry-Ortiz, Pauline Maes, Stéphanie Weidman, Christian Coelho, Dominique Champion

Institut Jules Guyot (IUVV), Université de Bourgogne, DIJON (France)  

Contact the author

Keywords

extracellular substances, lactic acid bacteria, chemical characterization, enological practices 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.