Yeast diversity in Vitis labrusca l. Ecosystems

Abstract

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola. Interestingly, P. cecembensis, not previously recognized in V. vinifera grapes or musts, was also found in V. labrusca L. grapes in Portugal (Azores Archipelago). Thus, this yeast species could be specifically associated with V. labrusca L. grapes, regardless of their geographic origin and/or the associated human interventions. Moreover, I. hanoiensis, a yeast species rarely isolated in V. vinifera grapes, was also identified in V. labrusca ecosystems from Argentina and Portugal. These results suggest that specific Vitis-microbial interactions may underlie the assembly of specific grape vine yeast communities. Also interestingly, some yeast genera commonly isolated from V. vinifera ecosystems (e.g., Hanseniaspora, Torulaspora and Metschnikowia) were rarely identified and almost never dominated the yeast communities in the V. labrusca L. musts we analyzed. Our results reinforce the research interest in biodiversity and extraordinary wine yeasts in ecological niches alternative to traditional V. vinifera ecosystems.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alberto Luis Rosa, Maria LauraRaymond, Francisco Conti

Laboratorio de Genética y Biología Molecular IRNASUS – CONICET Facultad de Ciencias Quimicas – Universidad Catolica de Cordoba Cordoba – Argentina 

Contact the author

Keywords

Vitis, labrusca, yeast, biodiversity

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Remote sensing and radiometric techniques applied to vineyards in two regions of Rio Grande do Sul, Brazil

The observation of Earth by satellites has demonstrated the feasibility of establishing differences between plant species, from their spectral features. The reflectance spectrum of vine plants follows this trend, being possible to identify vineyards in satellite images, among other species.

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.