Yeast diversity in Vitis labrusca l. Ecosystems

Abstract

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola. Interestingly, P. cecembensis, not previously recognized in V. vinifera grapes or musts, was also found in V. labrusca L. grapes in Portugal (Azores Archipelago). Thus, this yeast species could be specifically associated with V. labrusca L. grapes, regardless of their geographic origin and/or the associated human interventions. Moreover, I. hanoiensis, a yeast species rarely isolated in V. vinifera grapes, was also identified in V. labrusca ecosystems from Argentina and Portugal. These results suggest that specific Vitis-microbial interactions may underlie the assembly of specific grape vine yeast communities. Also interestingly, some yeast genera commonly isolated from V. vinifera ecosystems (e.g., Hanseniaspora, Torulaspora and Metschnikowia) were rarely identified and almost never dominated the yeast communities in the V. labrusca L. musts we analyzed. Our results reinforce the research interest in biodiversity and extraordinary wine yeasts in ecological niches alternative to traditional V. vinifera ecosystems.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alberto Luis Rosa, Maria LauraRaymond, Francisco Conti

Laboratorio de Genética y Biología Molecular IRNASUS – CONICET Facultad de Ciencias Quimicas – Universidad Catolica de Cordoba Cordoba – Argentina 

Contact the author

Keywords

Vitis, labrusca, yeast, biodiversity

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.