OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of cell-cell contact on yeast interactions and exo-metabolome

Influence of cell-cell contact on yeast interactions and exo-metabolome

Abstract

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used. Thus, S. cerevisiae/L. thermotolerans couple was used to unravel interactions between these two species during alcoholic fermentation. Thanks to a modified S. cerevisiae strain expressing a GFP allowing discrimination between yeast populations, both yeast viability was monitored by flow cytometry in pure and sequential fermentations of grape must with or without cell-cell contact. This reveal a decrease in cell viability for S. cerevisiae in both conditions with a greater decrease in case of cell-cell contact. Investigating the nature of the interactions, our results demonstrate a competition between species for nitrogen compounds, oxygen and for the first time a competition for must sterols. Volatile compounds analysis revealed changes in sequential fermentations compared to pure fermentations and showed also that cell-cell contact modify yeast metabolism since the volatile compound profile was significantly different from sequential fermentation without cell-cell contact. Yeast metabolism modifications associated with cell-cell contact were confirmed further by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show for the first time a specific metabolite production and quantitative metabolite changes linked to each fermentation condition. This study shows that cell-cell contact not only impact cell viability as already reported but deeply changes the yeast metabolism.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Petitgonnet, Géraldine L.Klein, Chloé Roullier-Gall, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Diane Julien-David, Hervé Alexandre

Helmholtz Zentrum Muenchen, Research unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany 
Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354 Freising, Germany 
Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain 
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Contact the author

Keywords

Interactions, Yeast, Flow cytometry, Exo-metabolome 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.