OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of cell-cell contact on yeast interactions and exo-metabolome

Influence of cell-cell contact on yeast interactions and exo-metabolome

Abstract

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used. Thus, S. cerevisiae/L. thermotolerans couple was used to unravel interactions between these two species during alcoholic fermentation. Thanks to a modified S. cerevisiae strain expressing a GFP allowing discrimination between yeast populations, both yeast viability was monitored by flow cytometry in pure and sequential fermentations of grape must with or without cell-cell contact. This reveal a decrease in cell viability for S. cerevisiae in both conditions with a greater decrease in case of cell-cell contact. Investigating the nature of the interactions, our results demonstrate a competition between species for nitrogen compounds, oxygen and for the first time a competition for must sterols. Volatile compounds analysis revealed changes in sequential fermentations compared to pure fermentations and showed also that cell-cell contact modify yeast metabolism since the volatile compound profile was significantly different from sequential fermentation without cell-cell contact. Yeast metabolism modifications associated with cell-cell contact were confirmed further by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show for the first time a specific metabolite production and quantitative metabolite changes linked to each fermentation condition. This study shows that cell-cell contact not only impact cell viability as already reported but deeply changes the yeast metabolism.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Petitgonnet, Géraldine L.Klein, Chloé Roullier-Gall, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Diane Julien-David, Hervé Alexandre

Helmholtz Zentrum Muenchen, Research unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany 
Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354 Freising, Germany 
Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain 
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Contact the author

Keywords

Interactions, Yeast, Flow cytometry, Exo-metabolome 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vitivoltaics: overview of the impacts on grapevine performance, wine quality, design features and stakeholder perceptions

This multidisciplinary study investigates “”Vitivoltaics,”” where photovoltaic (PV) panels are integrated into vineyard systems to generate renewable energy while providing partial shade to grapevines.

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation