OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of cell-cell contact on yeast interactions and exo-metabolome

Influence of cell-cell contact on yeast interactions and exo-metabolome

Abstract

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used. Thus, S. cerevisiae/L. thermotolerans couple was used to unravel interactions between these two species during alcoholic fermentation. Thanks to a modified S. cerevisiae strain expressing a GFP allowing discrimination between yeast populations, both yeast viability was monitored by flow cytometry in pure and sequential fermentations of grape must with or without cell-cell contact. This reveal a decrease in cell viability for S. cerevisiae in both conditions with a greater decrease in case of cell-cell contact. Investigating the nature of the interactions, our results demonstrate a competition between species for nitrogen compounds, oxygen and for the first time a competition for must sterols. Volatile compounds analysis revealed changes in sequential fermentations compared to pure fermentations and showed also that cell-cell contact modify yeast metabolism since the volatile compound profile was significantly different from sequential fermentation without cell-cell contact. Yeast metabolism modifications associated with cell-cell contact were confirmed further by analyzing the exo-metabolome of all fermentations by FT-ICR-MS analysis. These analyses show for the first time a specific metabolite production and quantitative metabolite changes linked to each fermentation condition. This study shows that cell-cell contact not only impact cell viability as already reported but deeply changes the yeast metabolism.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Clément Petitgonnet, Géraldine L.Klein, Chloé Roullier-Gall, Philippe Schmitt-Kopplin, Beatriz Quintanilla-Casas, Stefania Vichi, Diane Julien-David, Hervé Alexandre

Helmholtz Zentrum Muenchen, Research unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany 
Technische Universität Muenchen, Analytical Food Chemistry, Alte Akademie 10, 85354 Freising, Germany 
Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain 
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Contact the author

Keywords

Interactions, Yeast, Flow cytometry, Exo-metabolome 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.

Valorisation agroviticole de l’effet terroir par l’enherbement des sols

The studies developed by INRA and UV, in Angers, concern wine-growing areas and their optimized management, both from an agro-viticultural and oenological point of view. Previous work (Morlat, 1989) made it possible to give a scientific dimension to the concept of viticultural terroir and demonstrated the considerable influence of this production factor on the quality and typicity of wines (Asselin et al, 1992 ) . A methodology for the integrated characterization of terroirs, based on the “Basic Terroir Natural Unit” (considered as the smallest spatial unit of territory usable in practice, and in which the response of the vine is homogeneous), has been development (Riou et al , 1995).

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management