terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Abstract

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced. Whereas it is also used to produce orange wine which is fermented with their seed and skin. Previous study showed that β-damascenone could contribute to the fruity aroma in this style of wine. However, there is a few knowledge about the behavior of extraction of the phenol compounds during the fermentation and maceration, even though they are important compounds for the taste balance of such style. Furthermore, wines produced by Koshu grapes are sometimes described as bitter. Thus, the object of this study is to reveal the character of Koshu wine which is produced by the maceration at the point of view of phenol compounds.
In this study, Koshu was compared with other V. vinifera varieties, Sauvignon blanc (SB) and Merlot (MN). Each fruit tissues were separeted in pulp, seed and skin, and soaked separately in model wine solution (12% ethanol, tartaric acid 3000 mg/L, pH 3.2) during 14 days for study its capacity of extraction of phenol compounds at same alcohols degrees as wine. The results showed that proanthocyanidin was extracted by SB and MN seed and its content incresase during the sorking. On the other hand, proanthocyanidin was not extracted by Koshu seed, despite the presence of proanthocyanidin. Furthermore, these 3 varieties were fermented with seed and skin during 28 days for study the behavior of extraction of the phenol compounds during the fermentation and maceration in Koshu wine. The result showed that the content of proanthocyanidin and total phenols in Koshu wine were dramatically decreased during maceration. In contrast, those of SB and MN wine were stable or increased during maceration.
These new findings on the unique characteristics of proanthocyanidin in Koshu grape could might be showed the diversity of character in Vitis. And these insights are expected to contribute to the control of the taste of wine.

 

1. Ari’Izumi, K., Suzuki, Y., Kato, I., Yagi, Y., Otsuka, K. I. & Sato, M. (1994). Winemaking from Koshu variety by the sur lie method: change in the content of nitrogen compounds. American journal of enology and viticulture, 45(3), 312-318.
2. Ichikawa, M., Ono, K., Hisamoto, M., Matsudo, T. & Okuda, T. (2012). Effect of cap management technique on the concentration of proanthocyanidins in Muscat Bailey A wine. Food Science and Technology Research, 18(2), 201-207.
3. Goto-Yamamoto, N., Sawler, J. & Myles, S. (2015). Genetic analysis of East Asian grape cultivars suggests hybridization with wild Vitis. PloS One, 10(10).
4. Kobayashi, H. & Katsuno, Y. (2010). Effect of Processing on β-Damascenone Content in Wine and Application to Winemaking. 
J. Japan Association on Odor Environment, 41(3), 181-187.
5. Kobayashi, H., Takase, H., Kaneko, K., Tanzawa, F., Takata, R., Suzuki, S. & Konno, T. (2010). Analysis of S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-l-cysteine in Vitis vinifera L. cv. Koshu for aromatic wines. American Journal of Enology and Viticulture, 61(2), 176-185.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Hideki Takase² , Kanako Sasaki³ , Gen Ikoma⁴ , Mitsuhiro Anzo⁵ , Ryoji Takata⁶

1. Institute for Future Beverages, Kirin Holdings Company, Limited
2. Château Mercian, Mercian Corporation
3. Institute for Future Beverages, Kirin Holdings Company, Limited
4. Château Mercian, Mercian Corporation
5. Château Mercian, Mercian Corporation
6. Institute for Future Beverages, Kirin Holdings Company, Limited

Contact the author*

Keywords

Koshu, phenol, proanthocyanidin, maceration

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.