Terroir 2016 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity, a new and revealing technique for precision viticulture

Soil electrical resistivity, a new and revealing technique for precision viticulture

Abstract

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv. Tempranillo) located in the wine-producing regions of La Rioja and Navarra, Spain. High resolution continuous geoelectrical mapping was accomplished by an Automatic Resistivity Profiler (ARP) on-the-go sensor with an on-board GPS system; rolling electrodes enabled ER to be measured for a depth of investigation approximately up to 0.5, 1 and 2 meters. Contemporarily, in specific locations within the vineyard plots, soil samples were taken and physical soil analyses were performed in the laboratory. ER was related to spatial and temporal variabilities of a number of physical soil properties, such as salinity, clay mineral content and soil moisture. Resistivity data were interpolated over the whole area by means of the Ordinary Kriging interpolation algorithm, producing raster maps with a 5-m cell size. A correlation matrix was then employed to find out the most significant relationships between ER, soil physical and vegetative growth data. In conclusion, ER is a useful technique to identify areas with similar vegetative status within a vineyard in the frame of precision viticulture.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Javier Tardaguila (1), Maria-Paz Diago (1), Manuel Oliveira (2)

(1) Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja) 26006, Logroño, Spain
(2) CITAB – Department of Agronomy, UTAD, 5001-911 Vila Real, Portugal

Contact the author

Keywords

Terroir, soil, electrical conductivity precision viticulture, mapping, zoning, soil spatial variability; electrical resistivity; vineyard variability

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.