Terroir 2016 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity, a new and revealing technique for precision viticulture

Soil electrical resistivity, a new and revealing technique for precision viticulture

Abstract

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv. Tempranillo) located in the wine-producing regions of La Rioja and Navarra, Spain. High resolution continuous geoelectrical mapping was accomplished by an Automatic Resistivity Profiler (ARP) on-the-go sensor with an on-board GPS system; rolling electrodes enabled ER to be measured for a depth of investigation approximately up to 0.5, 1 and 2 meters. Contemporarily, in specific locations within the vineyard plots, soil samples were taken and physical soil analyses were performed in the laboratory. ER was related to spatial and temporal variabilities of a number of physical soil properties, such as salinity, clay mineral content and soil moisture. Resistivity data were interpolated over the whole area by means of the Ordinary Kriging interpolation algorithm, producing raster maps with a 5-m cell size. A correlation matrix was then employed to find out the most significant relationships between ER, soil physical and vegetative growth data. In conclusion, ER is a useful technique to identify areas with similar vegetative status within a vineyard in the frame of precision viticulture.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Javier Tardaguila (1), Maria-Paz Diago (1), Manuel Oliveira (2)

(1) Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja) 26006, Logroño, Spain
(2) CITAB – Department of Agronomy, UTAD, 5001-911 Vila Real, Portugal

Contact the author

Keywords

Terroir, soil, electrical conductivity precision viticulture, mapping, zoning, soil spatial variability; electrical resistivity; vineyard variability

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Epigenetic reponses and memories to (a)biotic stresses in grapevine

Epigenetics corresponds to the complement of genetic information carried in chromatin beyond the DNA sequence.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

The landscape in the development of vineyard regions: an application to the ACO Dão and ACO Bairrada (Central Portugal)

The aim of this paper is to analyse the impact of landscapes in the notoriety and marketing of wines and in tourism promotion, specifically in the case of two centenary Portuguese demarcated regions

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.