Terroir 2016 banner
IVES 9 IVES Conference Series 9 Soil electrical resistivity, a new and revealing technique for precision viticulture

Soil electrical resistivity, a new and revealing technique for precision viticulture

Abstract

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv. Tempranillo) located in the wine-producing regions of La Rioja and Navarra, Spain. High resolution continuous geoelectrical mapping was accomplished by an Automatic Resistivity Profiler (ARP) on-the-go sensor with an on-board GPS system; rolling electrodes enabled ER to be measured for a depth of investigation approximately up to 0.5, 1 and 2 meters. Contemporarily, in specific locations within the vineyard plots, soil samples were taken and physical soil analyses were performed in the laboratory. ER was related to spatial and temporal variabilities of a number of physical soil properties, such as salinity, clay mineral content and soil moisture. Resistivity data were interpolated over the whole area by means of the Ordinary Kriging interpolation algorithm, producing raster maps with a 5-m cell size. A correlation matrix was then employed to find out the most significant relationships between ER, soil physical and vegetative growth data. In conclusion, ER is a useful technique to identify areas with similar vegetative status within a vineyard in the frame of precision viticulture.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Javier Tardaguila (1), Maria-Paz Diago (1), Manuel Oliveira (2)

(1) Instituto de Ciencias de la Vid y del Vino (University of La Rioja, CSIC, Gobierno de La Rioja) 26006, Logroño, Spain
(2) CITAB – Department of Agronomy, UTAD, 5001-911 Vila Real, Portugal

Contact the author

Keywords

Terroir, soil, electrical conductivity precision viticulture, mapping, zoning, soil spatial variability; electrical resistivity; vineyard variability

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Climatic zoning of the Ibero-American viticultural regions

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”.