OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Abstract

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region. 

The aim of this work is to compare, on 55 wines (4 vintages, 7 varieties, 5 areas), the most common heat test (30 minutes at 80°C) with the turbidity measured after 15 days at 35 °C on bottled wines. Proteins were analyzed in 33 cases. In addition, 10 wines were heated at 40 °C/30 min, 40°C/4 hours, 35 °C/15 days and 80 °C/30 min and the residual proteins analyzed. 

The results show no correlation between turbidity after heat test 80 °C/30 min and after 15 days at 35 °C. For some wines, especially Gewurztraminer ones, turbidity after heating at 80 °C can reach 330 NTU without any visual haze at 35 °C (< 3 NTU). Similar results are obtained when the heat test is performed after adjustment of pH to 3.4. The turbidity after heat test 80°C/30 min increases with pH, particularly above 3.6, which is not so unusual for Gewurztraminer wines. The pH effect is less significant at 40 °C. Finally, pH values alone cannot explain the different behaviors of wines. 

On the other hand, protein composition in wines depends on their pH. Thaumatin Like proteins (TL) 19 kDa, TL 22kDa and Invertases are present in almost all wines. Half of them contains Lipid Transfer Protein (LTP) and only a few Chitinases and β-Glucanase. These proteins are present when pH is lower than 3.5, probably because low pH favor Chitinase and-glucanase conformational changes and precipitation. 

Protein analysis after heating these various wines at different time-temperature couples led to this ranking: 
Chitinases are sensitive at low temperature (40 °C) and resist better at pH 3.7; 
TL 22kDa are sensitive, especially in Rosé wines; 
TL 19kDa are more stable, but their sensitivity depends on the pH; 
Invertase unfold between 60 and 80°C but is not affected by the pH; 
LTP can resist up to 80 °C. 

Turbidity after usual heat test 80 °C/30 min increases with total proteins concentration and pH. This is not observed after 15 days at 35 °C or 4 hours at 40 °C. These tests may be better to evaluate the actual risk of instability after bottling.

Related articles…

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.