OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Abstract

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region. 

The aim of this work is to compare, on 55 wines (4 vintages, 7 varieties, 5 areas), the most common heat test (30 minutes at 80°C) with the turbidity measured after 15 days at 35 °C on bottled wines. Proteins were analyzed in 33 cases. In addition, 10 wines were heated at 40 °C/30 min, 40°C/4 hours, 35 °C/15 days and 80 °C/30 min and the residual proteins analyzed. 

The results show no correlation between turbidity after heat test 80 °C/30 min and after 15 days at 35 °C. For some wines, especially Gewurztraminer ones, turbidity after heating at 80 °C can reach 330 NTU without any visual haze at 35 °C (< 3 NTU). Similar results are obtained when the heat test is performed after adjustment of pH to 3.4. The turbidity after heat test 80°C/30 min increases with pH, particularly above 3.6, which is not so unusual for Gewurztraminer wines. The pH effect is less significant at 40 °C. Finally, pH values alone cannot explain the different behaviors of wines. 

On the other hand, protein composition in wines depends on their pH. Thaumatin Like proteins (TL) 19 kDa, TL 22kDa and Invertases are present in almost all wines. Half of them contains Lipid Transfer Protein (LTP) and only a few Chitinases and β-Glucanase. These proteins are present when pH is lower than 3.5, probably because low pH favor Chitinase and-glucanase conformational changes and precipitation. 

Protein analysis after heating these various wines at different time-temperature couples led to this ranking: 
Chitinases are sensitive at low temperature (40 °C) and resist better at pH 3.7; 
TL 22kDa are sensitive, especially in Rosé wines; 
TL 19kDa are more stable, but their sensitivity depends on the pH; 
Invertase unfold between 60 and 80°C but is not affected by the pH; 
LTP can resist up to 80 °C. 

Turbidity after usual heat test 80 °C/30 min increases with total proteins concentration and pH. This is not observed after 15 days at 35 °C or 4 hours at 40 °C. These tests may be better to evaluate the actual risk of instability after bottling.

Related articles…

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer).

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE).