OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Abstract

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region. 

The aim of this work is to compare, on 55 wines (4 vintages, 7 varieties, 5 areas), the most common heat test (30 minutes at 80°C) with the turbidity measured after 15 days at 35 °C on bottled wines. Proteins were analyzed in 33 cases. In addition, 10 wines were heated at 40 °C/30 min, 40°C/4 hours, 35 °C/15 days and 80 °C/30 min and the residual proteins analyzed. 

The results show no correlation between turbidity after heat test 80 °C/30 min and after 15 days at 35 °C. For some wines, especially Gewurztraminer ones, turbidity after heating at 80 °C can reach 330 NTU without any visual haze at 35 °C (< 3 NTU). Similar results are obtained when the heat test is performed after adjustment of pH to 3.4. The turbidity after heat test 80°C/30 min increases with pH, particularly above 3.6, which is not so unusual for Gewurztraminer wines. The pH effect is less significant at 40 °C. Finally, pH values alone cannot explain the different behaviors of wines. 

On the other hand, protein composition in wines depends on their pH. Thaumatin Like proteins (TL) 19 kDa, TL 22kDa and Invertases are present in almost all wines. Half of them contains Lipid Transfer Protein (LTP) and only a few Chitinases and β-Glucanase. These proteins are present when pH is lower than 3.5, probably because low pH favor Chitinase and-glucanase conformational changes and precipitation. 

Protein analysis after heating these various wines at different time-temperature couples led to this ranking: 
Chitinases are sensitive at low temperature (40 °C) and resist better at pH 3.7; 
TL 22kDa are sensitive, especially in Rosé wines; 
TL 19kDa are more stable, but their sensitivity depends on the pH; 
Invertase unfold between 60 and 80°C but is not affected by the pH; 
LTP can resist up to 80 °C. 

Turbidity after usual heat test 80 °C/30 min increases with total proteins concentration and pH. This is not observed after 15 days at 35 °C or 4 hours at 40 °C. These tests may be better to evaluate the actual risk of instability after bottling.

Related articles…

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...