OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

Abstract

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region. 

The aim of this work is to compare, on 55 wines (4 vintages, 7 varieties, 5 areas), the most common heat test (30 minutes at 80°C) with the turbidity measured after 15 days at 35 °C on bottled wines. Proteins were analyzed in 33 cases. In addition, 10 wines were heated at 40 °C/30 min, 40°C/4 hours, 35 °C/15 days and 80 °C/30 min and the residual proteins analyzed. 

The results show no correlation between turbidity after heat test 80 °C/30 min and after 15 days at 35 °C. For some wines, especially Gewurztraminer ones, turbidity after heating at 80 °C can reach 330 NTU without any visual haze at 35 °C (< 3 NTU). Similar results are obtained when the heat test is performed after adjustment of pH to 3.4. The turbidity after heat test 80°C/30 min increases with pH, particularly above 3.6, which is not so unusual for Gewurztraminer wines. The pH effect is less significant at 40 °C. Finally, pH values alone cannot explain the different behaviors of wines. 

On the other hand, protein composition in wines depends on their pH. Thaumatin Like proteins (TL) 19 kDa, TL 22kDa and Invertases are present in almost all wines. Half of them contains Lipid Transfer Protein (LTP) and only a few Chitinases and β-Glucanase. These proteins are present when pH is lower than 3.5, probably because low pH favor Chitinase and-glucanase conformational changes and precipitation. 

Protein analysis after heating these various wines at different time-temperature couples led to this ranking: 
Chitinases are sensitive at low temperature (40 °C) and resist better at pH 3.7; 
TL 22kDa are sensitive, especially in Rosé wines; 
TL 19kDa are more stable, but their sensitivity depends on the pH; 
Invertase unfold between 60 and 80°C but is not affected by the pH; 
LTP can resist up to 80 °C. 

Turbidity after usual heat test 80 °C/30 min increases with total proteins concentration and pH. This is not observed after 15 days at 35 °C or 4 hours at 40 °C. These tests may be better to evaluate the actual risk of instability after bottling.

Related articles…

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Zonazione dell’area viticola doc durello

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona.