OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Abstract

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. 

In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques. 

The heat instability tests of the 19 wines show strongly different results according to the test used. With the 50 °C heating tests, the wines showed logarithmic curves with a maximal value reached in 30 min. At the opposite, after the 80 °C heating tests, the white wines showed a linear increase of the turbidity during the 60 min of the heating, leading to linear curves with R2>0.99. Moreover, the turbidities observed were much higher when the wines were heated at 80 °C when compared with the wines after the 50°C tests. These results clearly pointed out the discrepancies between the test selected to estimate a white wine haze risk and the treatment necessary to avoid a haze after bottling. 

Concerning the wines obtained after juice bentonite treatments, we observed a dose effect with a high correlation at 50°C between the dose of swelling clay and the wine haze risk. 60 g/hL were necessary to reach the colloidal stability, whatever the test used (50 or 80 °C) and the heating time. The addition of proteases at 50 °C or 60 °C during 1 hr before a quick increase at 72 °C (as recommended by the OIV) and refreshing in cold water decreased the haze risk by 75 % and 85 % respectively when compared to the control wine, whilst the same heat treatment without enzymes only decreased the haze risk by 28 % and 17 % respectively. 

The ability for enological proteases to hydrolyze grape berry heat unstable proteins (observed by SDS-PAGE) was strongly evidenced with the heat test at 50 °C. Proteases reduced the heat instability by 40 % whilst the heat treatment alone was pretty ineffective. 

This study proved the possibility to use proteases as an efficient treatment to control white wine haze risk.

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin. In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Crowdsourced the assessment of wine rating: professional wine competition rating vs vivino rating

We evaluate wine ratings by comparing data from two crowdsourcing platforms – Vivino, which aggregates the opinions of a large number of wine lovers, and Global Wine Medal Rating, which aggregates the scores from more than 1030 international wine competitions since 2020.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.