OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Abstract

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. 

In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques. 

The heat instability tests of the 19 wines show strongly different results according to the test used. With the 50 °C heating tests, the wines showed logarithmic curves with a maximal value reached in 30 min. At the opposite, after the 80 °C heating tests, the white wines showed a linear increase of the turbidity during the 60 min of the heating, leading to linear curves with R2>0.99. Moreover, the turbidities observed were much higher when the wines were heated at 80 °C when compared with the wines after the 50°C tests. These results clearly pointed out the discrepancies between the test selected to estimate a white wine haze risk and the treatment necessary to avoid a haze after bottling. 

Concerning the wines obtained after juice bentonite treatments, we observed a dose effect with a high correlation at 50°C between the dose of swelling clay and the wine haze risk. 60 g/hL were necessary to reach the colloidal stability, whatever the test used (50 or 80 °C) and the heating time. The addition of proteases at 50 °C or 60 °C during 1 hr before a quick increase at 72 °C (as recommended by the OIV) and refreshing in cold water decreased the haze risk by 75 % and 85 % respectively when compared to the control wine, whilst the same heat treatment without enzymes only decreased the haze risk by 28 % and 17 % respectively. 

The ability for enological proteases to hydrolyze grape berry heat unstable proteins (observed by SDS-PAGE) was strongly evidenced with the heat test at 50 °C. Proteases reduced the heat instability by 40 % whilst the heat treatment alone was pretty ineffective. 

This study proved the possibility to use proteases as an efficient treatment to control white wine haze risk.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Richard Marchal

Faculté des Sciences de Reims 
BP1039 – 51687 Reims Cedex02

Contact the author

Keywords

proteases, white wine, heat instability tests, proteic composition 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.