OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

Abstract

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. 

In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques. 

The heat instability tests of the 19 wines show strongly different results according to the test used. With the 50 °C heating tests, the wines showed logarithmic curves with a maximal value reached in 30 min. At the opposite, after the 80 °C heating tests, the white wines showed a linear increase of the turbidity during the 60 min of the heating, leading to linear curves with R2>0.99. Moreover, the turbidities observed were much higher when the wines were heated at 80 °C when compared with the wines after the 50°C tests. These results clearly pointed out the discrepancies between the test selected to estimate a white wine haze risk and the treatment necessary to avoid a haze after bottling. 

Concerning the wines obtained after juice bentonite treatments, we observed a dose effect with a high correlation at 50°C between the dose of swelling clay and the wine haze risk. 60 g/hL were necessary to reach the colloidal stability, whatever the test used (50 or 80 °C) and the heating time. The addition of proteases at 50 °C or 60 °C during 1 hr before a quick increase at 72 °C (as recommended by the OIV) and refreshing in cold water decreased the haze risk by 75 % and 85 % respectively when compared to the control wine, whilst the same heat treatment without enzymes only decreased the haze risk by 28 % and 17 % respectively. 

The ability for enological proteases to hydrolyze grape berry heat unstable proteins (observed by SDS-PAGE) was strongly evidenced with the heat test at 50 °C. Proteases reduced the heat instability by 40 % whilst the heat treatment alone was pretty ineffective. 

This study proved the possibility to use proteases as an efficient treatment to control white wine haze risk.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Richard Marchal

Faculté des Sciences de Reims 
BP1039 – 51687 Reims Cedex02

Contact the author

Keywords

proteases, white wine, heat instability tests, proteic composition 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Late leaf removal does not consistently delay ripeningin semillon in Australia

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.