OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Abstract

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. 

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors. 

To study the yeasts ability to produce these molecules, a dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry was developed for their quantification in white wines, synthetic wine and fermented synthetic medium. A mixture of acetone (dispersive solvent) and dichloromethane (extractive solvent) was added to 5 ml of sample. The proposed method showed no matrix effect, a good linearity in enological range (from 10 to 300 μg/L), good recoveries, inter-day precision and good reproducibility. The developed method was applied to the analysis of the capacities of 41 yeast strains to produce terpene compounds in Chardonnay must and in synthetic meidum. Interestingly, the majority of the studied compound has been detected and quantified in the resulting wines. 

This sample-preparation technique is very interesting for high-throughput studies and for economic and environmental reasons because it is fast, easy to operate with a high enrichment, and consumes low volume of organic solvent.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Guillaume Bergler, Michel Brulfert, Anne Ortiz-Julien, Carole Camarasa, Audrey Bloem

Martell-Mumm-Perrier Jouët, Pernod Ricard, Cognac, France 
Lallemand SAS, Blagnac 
UMR SPO, INRA Montpellier 2 place Pierre Viala, 34060 Montpellier, France 

Contact the author

Keywords

DLLME, Terpens, Alcoholic fermentation, Wine yeast 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The role of mechanization in zone/terroir expression

Vineyard mechanization will be addressed in this review paper primarily as related to pruning and harvesting since these operations typically require a great deal of the total yearly labour demand (Intrieri and Poni, 1998). However, to be able to define how mechanization interacts with “terroir”, a rigorous definition of the latter term is needed.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world